Skip to main content
Log in

Effects of Gd Addition on the Microstructure and Tensile Properties of Mg–4Al–5RE Alloy Produced by Three Different Casting Methods

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

This work deals with the effect of 0.67 wt% Gd addition on the microstructure and tensile properties of Mg–4Al–5RE (where RE represents La–Ce mischmetal) alloy produced by sand casting (SC), permanent mold casting (PMC), and high-pressure die casting (HPDC). The results show that Gd addition could refine the grains, but its efficiency decreases by increasing the cooling rate due to the shifting from SC to PMC and finally to the HPDC method. Meanwhile, the acicular Al11RE3 phase is modified into the short-rod or granular-like shape under the three casting conditions. Such refined and modified microstructures are due to the Al2(Gd, RE) phases, which act as the nucleation sites in both the α-Mg matrix and Al11RE3 phase. Also, the weakening grain refinement effect in the increased cooling rates can be attributed to the narrow constitutional undercooling zone. After Gd addition, the 0.2% proof strength of the SC and PMC alloys increases by about 16.9% and 12.7%, respectively, while in the HPDC alloy, it decreases by about 5.9%. The main factor in the strength increment of the SC and PMC alloys is the grain boundary strengthening due to grain refinement which is proved by modeling the related mechanisms, whereas weak secondary phases and grain boundary strengthening mechanisms in the HPDC alloy lead to strength reduction. After Gd addition, the elongation to failure of the SC, PMC, and HPDC alloys is significantly enhanced by about 34.8%, 20.2%, and 12.3%, respectively, due to the crack resistance nature of the modified short-rod/granular Al11(RE, Gd)3 phase compared to the acicular one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.A. Luo, Int. Mater. Rev. 49, 1 (2004)

    Article  Google Scholar 

  2. S. Ataya, N.A. Alsaleh, M.M. El-Sayed Seleman, Acta Metall. Sin. Engl. Lett. 32, 1 (2019)

    Article  Google Scholar 

  3. J. Zhang, P. Yu, K. Liu, D. Fang, D. Tang, J. Meng, Mater. Des. 30, 7 (2009)

    Google Scholar 

  4. J. Zhang, K. Liu, D. Fang, X. Qiu, D. Tang, J. Meng, J. Mater. Sci. 44, 8 (2009)

    Google Scholar 

  5. J. Zhang, K. Liu, D. Fang, X. Qiu, P. Yu, D. Tang, J. Meng, J. Alloys Compd. 480, 2 (2009)

    Article  Google Scholar 

  6. J. Zhang, J. Wang, X. Qiu, D. Zhang, Z. Tian, X. Niu, D. Tang, J. Meng, J. Alloys Compd. 464, 1 (2008)

    Article  Google Scholar 

  7. Q. Yang, K. Guan, X. Qiu, D. Zhang, S. Lv, F. Bu, Y. Zhang, X. Liu, J. Meng, Mater. Sci. Eng. A 675, 396 (2016)

    Article  CAS  Google Scholar 

  8. S. Lv, X. Lü, F. Meng, Q. Yang, X. Qiu, P. Qin, Q. Duan, J. Meng, Mater. Sci. Eng. A 773, 138725 (2019)

    Article  Google Scholar 

  9. J. Wei, Q. Wang, L. Zhang, D. Yin, B. Ye, H. Jiang, W. Ding, Mater. Lett. 246, 125 (2019)

    Article  CAS  Google Scholar 

  10. Q. Yang, T. Zheng, D. Zhang, X. Liu, J. Fan, X. Qiu, X. Niu, J. Meng, J. Alloys Compd. 572, 12 (2013)

    Google Scholar 

  11. Q. Yang, F. Bu, T. Zheng, F. Meng, X. Liu, D. Zhang, X. Qiu, J. Meng, Mater. Sci. Eng. A 619, 8 (2014)

    Article  Google Scholar 

  12. Q. Yang, K. Guan, F. Bu, Y. Zhang, X. Qiu, T. Zheng, X. Liu, J. Meng, Mater. Charact. 113, 180 (2016)

    Article  CAS  Google Scholar 

  13. D. Qiu, M.X. Zhang, J.A. Taylor, P.M. Kelly, Acta Mater. 57, 10 (2009)

    Article  Google Scholar 

  14. J. Dai, M. Easton, S. Zhu, G. Wu, W. Ding, J. Mater. Res. 27, 21 (2012)

    Article  Google Scholar 

  15. A.A. Luo, J. Magnes. Alloy. 1, 1 (2013)

    Article  Google Scholar 

  16. J. Bai, Y. Sun, F. Xue, J. Qiang, Mater. Sci. Eng. A 552, 472 (2012)

    Article  CAS  Google Scholar 

  17. Y. Ali, Y. Ali, G. You, G. You, F. Pan, F. Pan, M. Zhang, M. Zhang, Metall. Mater. Trans. A 48, 1 (2017)

    Article  Google Scholar 

  18. G.Y. Yuan, Z.L. Liu, Q.D. Wang, W.J. Ding, Mater. Lett. 56, 1 (2002)

    Article  Google Scholar 

  19. V.E. Bazhenov, Y.V. Tselovalnik, A.V. Koltygin, V.D. Belov, Int. J. Metalcast. 15, 2 (2021)

    Article  Google Scholar 

  20. G. Liu, G. Liu, Q. Wang, Q. Wang, L. Zhang, L. Zhang, B. Ye, B. Ye, H. Jiang, H. Jiang, W. Ding, W. Ding, Metall. Mater. Trans. A 50, 1 (2019)

    CAS  Google Scholar 

  21. G. Timelli, G. Camicia, S. Ferraro, J. Mater. Eng. Perform. 23, 2 (2014)

    Article  Google Scholar 

  22. R. Trivedi, W. Kurz, Int. Mater. Rev. 39, 2 (1994)

    Article  Google Scholar 

  23. W. Sun, X. Shi, E. Cinkilic, A.A. Luo, J. Mater. Sci. 51, 13 (2016)

    Google Scholar 

  24. X. Li, S. Xiong, Z. Guo, Acta Metall. Sin. Engl. Lett. 29, 7 (2016)

    Google Scholar 

  25. M.C. Flemings, in Encyclopedia of Materials: Science and Technology. ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Elsevier, Oxford, 2001), pp. 8753–8755

    Chapter  Google Scholar 

  26. D. Qiu, M. Zhang, P.M. Kelly, Scr. Mater. 61, 3 (2009)

    Article  Google Scholar 

  27. G. Liang, Y. Ali, G. You, M. Zhang, Materialia 3, 113 (2018)

    Article  Google Scholar 

  28. H.Q. Ang, T.B. Abbott, S. Zhu, M.A. Easton, Metall. Mater. Trans. A 50, 8 (2019)

    Article  Google Scholar 

  29. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59, 12 (2011)

    Article  Google Scholar 

  30. Y. Ali, D. Qiu, B. Jiang, F. Pan, M. Zhang, J. Alloys Compd. 619, 639 (2015)

    Article  CAS  Google Scholar 

  31. M. Sun, D.H. StJohn, M.A. Easton, K. Wang, J. Ni, Metall. Mater. Trans. A 51, 1 (2020)

    Article  CAS  Google Scholar 

  32. K.V. Yang, C.H. Cáceres, M.A. Easton, Metall. Mater. Trans. A 45, 9 (2014)

    Google Scholar 

  33. R.L. Fleischer, Acta Metall. 11, 3 (1963)

    Article  Google Scholar 

  34. Y. Bai, W. Cheng, S. Ma, J. Zhang, C. Guo, Y. Zhang, Acta Metall. Sin. Engl. Lett. 31, 5 (2018)

    Google Scholar 

  35. I. Toda-Caraballo, E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 75, 287 (2014)

    Article  CAS  Google Scholar 

  36. W. Fu, R. Wang, K. Wu, J. Kuang, J. Zhang, G. Liu, J. Sun, J. Mater. Sci. 54, 3 (2019)

    Google Scholar 

  37. C.H. Cáceres, C.J. Davidson, J.R. Griffiths, C.L. Newton, Mater. Sci. Eng. A 325, 1 (2002)

    Article  Google Scholar 

  38. C.H. Cáceres, W.J. Poole, A.L. Bowles, C.J. Davidson, Mater. Sci. Eng. A 402, 1 (2005)

    Article  Google Scholar 

  39. W. Ding, J. Yi, P. Chen, D. Li, L. Peng, B. Tang, Solid State Sci. 14, 5 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0301001) and the National Natural Science Foundation of China (NSFC, Grant Nos. U1902220 and 51674166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qudong Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Wang, Q., Zhang, L. et al. Effects of Gd Addition on the Microstructure and Tensile Properties of Mg–4Al–5RE Alloy Produced by Three Different Casting Methods. Acta Metall. Sin. (Engl. Lett.) 34, 1361–1374 (2021). https://doi.org/10.1007/s40195-021-01276-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01276-4

Keywords

Navigation