Skip to main content
Log in

A 2D FDEM-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Based on the combined finite–discrete element method (FDEM), this paper presents a moisture diffusion–fracture coupling model to simulate soil desiccation cracking. The coupling model, firstly, analyzes moisture content distribution within the soil according to a moisture diffusion model. Then, the shrinkage stress caused by the change of moisture content is calculated and applied to the system equation of FDEM. Finally, if a new crack is generated, the node sharing relationship and mesh of adjacent solid elements are updated for moisture diffusion calculation in the next time step. In this paper, examples of 1D moisture migration in the soil trip, shrinkage stress and deformation caused by the moisture reduce in the rectangular soil are studied. The simulation results agree well with analytical solutions, which verifies the correctness of the proposed model. Then, the model is used to simulate soil desiccation cracking process, and the crack evolution pattern in the numerical results is consistent with experimental results. Besides, several main factors affecting soil desiccation cracking are also investigated, including the elastic modulus, the moisture shrinkage coefficient, and the soil thickness. The moisture diffusion–fracture coupling model provides a new research tool for studying the mechanical mechanism of soil desiccation cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Amarasiri AL, Kodikara JK, Costa S (2011) Numerical modelling of desiccation cracking. Int J Numer Anal Meth Geomech 35(1):82–96. https://doi.org/10.1002/nag.894

    Article  Google Scholar 

  2. Bagge G (1985) Tension cracks in saturated clay cuttings. In: International conference on soil mechanics and foundation engineering. 11, pp 393–395

  3. Bronswijk J, Hamminga W, Oostindie K (1995) Field-scale solute transport in a heavy clay soil. Water Resour Res 31(3):517–526

    Article  Google Scholar 

  4. Deng P, Liu Q, Huang X, Liu Q, Ma H, Li W (2021) Acquisition of normal contact stiffness and its influence on rock crack propagation for the combined finite-discrete element method (FDEM). Eng Fract Mech 242:107459. https://doi.org/10.1016/j.engfracmech.2020.107459

    Article  Google Scholar 

  5. Deng G, Shen Z (2006) Numerical simulation of crack formation process in clays during drying and wetting. Geomech Geoeng Int J 1(1):27–41

    Article  Google Scholar 

  6. Dyer M, Utili S, Zielinski M (2009) Field study into fine desiccation fissuring at Thorngumbald. Proc ICE Water Manage 162(3):221–232

    Google Scholar 

  7. El Mountassir G, Sánchez M, Romero E, Soemitro RAA (2011) Behaviour of compacted silt used to construct flood embankment. Proc Inst Civil Eng Geotech Eng 164(3):195–210. https://doi.org/10.1680/geng.10.00055

    Article  Google Scholar 

  8. Farsi A, Xiang J, Latham JP, Carlsson M, Stitt EH, Marigo M (2020) Strength and fragmentation behaviour of complex-shaped catalyst pellets: a numerical and experimental study. Chem Eng Sci 213:115409. https://doi.org/10.1016/j.ces.2019.115409

    Article  Google Scholar 

  9. Feng K, Huang D, Wang G (2021) Two-layer material point method for modeling soil–water interaction in unsaturated soils and rainfall-induced slope failure. Acta Geotech. https://doi.org/10.1007/s11440-021-01222-9

    Article  Google Scholar 

  10. Fukuda D, Mohammadnejad M, Liu H, Zhang Q, Zhao J, Dehkhoda S, Chan A, Kodama JI, Fujii YJRM, Engineering R (2019) Development of a 3D hybrid finite-discrete element simulator based on GPGPU-parallelized computation for modelling rock fracturing under quasi-static and dynamic loading conditions. Rock Mech Rock End 53:1–34

    Google Scholar 

  11. Gui Y, Zhao GF (2015) Modelling of laboratory soil desiccation cracking using DLSM with a two-phase bond model. Comput Geotech 69:578–587. https://doi.org/10.1016/j.compgeo.2015.07.001

    Article  Google Scholar 

  12. Gui YL, Zhao ZY, Kodikara J, Bui HH, Yang SQ (2016) Numerical modelling of laboratory soil desiccation cracking using UDEC with a mix-mode cohesive fracture model. Eng Geol 202:14–23. https://doi.org/10.1016/j.enggeo.2015.12.028

    Article  Google Scholar 

  13. Hobbs PRN, Jones LD, Kirkham MP, Gunn DA, Entwisle DC (2019) Shrinkage limit test results and interpretation for clay soils. Q J Eng GeolHydrogeol 52(2):220–229. https://doi.org/10.1144/qjegh2018-100

    Article  Google Scholar 

  14. Hu LB, Péron H, Hueckel T, Laloui L (2013) Mechanisms and critical properties in drying shrinkage of soils: experimental and numerical parametric studies. Can Geotech J 50(5):536–549. https://doi.org/10.1139/cgj-2012-0065

    Article  Google Scholar 

  15. Jones G, Zielinski M, Sentenac P (2012) Mapping desiccation fissures using 3-D electrical resistivity tomography. J Appl Geophys 84:39–51. https://doi.org/10.1016/j.jappgeo.2012.06.002

    Article  Google Scholar 

  16. Kodikara J, Barbour SL, Fredlund DG (2000) Desiccation cracking of soil layers. In Proceedings of the first asian conference on unsaturated soils, pp 693–698

  17. Kodikara J, Costa S (2013) Desiccation cracking in clayey soils: mechanisms and modelling. In: Multiphysical testing of soils and shales. Springer, pp 21–32

  18. Konrad JM, Ayad R (1997) A idealized framework for the analysis of cohesive soils undergoing desiccation. Can Geotech J 34(4):477–488

    Article  Google Scholar 

  19. Konrad JM, Ayad R (1997) Desiccation of a sensitive clay: field experimental observations. Can Geotech J 34:929–942

    Article  Google Scholar 

  20. Lei Z, Rougier E, Knight EE, Munjiza A, Viswanathan H (2016) A generalized anisotropic deformation formulation for geomaterials. Comput Part Mech 3(2):215–228

    Article  Google Scholar 

  21. Li JH, Lu Z, Guo LB, Zhang LM (2017) Experimental study on soil-water characteristic curve for silty clay with desiccation cracks. Eng Geol 218:70–76. https://doi.org/10.1016/j.enggeo.2017.01.004

    Article  Google Scholar 

  22. Li JH, Zhang LM (2010) Geometric parameters and REV of a crack network in soil. Comput Geotech 37(4):466–475. https://doi.org/10.1016/j.compgeo.2010.01.006

    Article  Google Scholar 

  23. Li JH, Zhang LM (2011) Study of desiccation crack initiation and development at ground surface. Eng Geol 123(4):347–358. https://doi.org/10.1016/j.enggeo.2011.09.015

    Article  Google Scholar 

  24. Lisjak A, Liu Q, Zhao Q, Mahabadi OK, Grasselli G (2013) Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis. Geophys J Int 195(1):423–443. https://doi.org/10.1093/gji/ggt221

    Article  Google Scholar 

  25. Mahabadi O, Kaifosh P, Marschall P, Vietor T (2014) Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples. J Rock Mech Geotech Eng 6(6):591–606. https://doi.org/10.1016/j.jrmge.2014.10.005

    Article  Google Scholar 

  26. Mohammadnejad T, Khoei A (2013) Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method. Int J Numer Anal Meth Geomech 37(10):1247–1279

    Article  Google Scholar 

  27. Munjiza AA (2004) The combined finite-discrete element method. John Wiley & Sons

    Book  Google Scholar 

  28. Munjiza A, Andrews K (2000) Penalty function method for combined finite–discrete element systems comprising large number of separate bodies. Int J Numer Meth Eng 49(11):1377–1396

    Article  Google Scholar 

  29. Munjiza A, Andrews K, White J (1999) Combined single and smeared crack model in combined finite-discrete element analysis. Int J Numer Meth Eng 44(1):41–57

    Article  Google Scholar 

  30. Munjiza AA, Knight EE, Rougier E (2011) Computational mechanics of discontinua. John Wiley & Sons

    Book  Google Scholar 

  31. Munjiza A, Knight EE, Rougier E (2015) Large strain finite element method: a practical course. John Wiley & Sons

    MATH  Google Scholar 

  32. Munjiza A, Owen D, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(12):145–174

    Article  Google Scholar 

  33. Munjiza A, Rougier E, Lei Z, Knight EE (2020) FSIS: a novel fluid–solid interaction solver for fracturing and fragmenting solids. Comput Part Mech 7(5):789–805. https://doi.org/10.1007/s40571-020-00314-9

    Article  Google Scholar 

  34. Peron H, Delenne JY, Laloui L, El Youssoufi MS (2009) Discrete element modelling of drying shrinkage and cracking of soils. Comput Geotech 36(1–2):61–69. https://doi.org/10.1016/j.compgeo.2008.04.002

    Article  Google Scholar 

  35. Peron H, Hueckel T, Laloui L, Hu LB (2009) Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification. Can Geotech J 46(10):1177–1201. https://doi.org/10.1139/t09-054

    Article  Google Scholar 

  36. Pouya A (2015) A finite element method for modeling coupled flow and deformation in porous fractured media. Int J Numer Anal Meth Geomech 39(16):1836–1852. https://doi.org/10.1002/nag.2384

    Article  Google Scholar 

  37. Pouya A, Vo TD, Hemmati S, Tang AM (2019) Modeling soil desiccation cracking by analytical and numerical approaches. Int J Numer Anal Meth Geomech 43(3):738–763. https://doi.org/10.1002/nag.2887

    Article  Google Scholar 

  38. Rodríguez R, Sánchez M, Ledesma A, Lloret A (2007) Experimental and numerical analysis of desiccation of a mining waste desiccation. Can Geotech J 44(6):644–658. https://doi.org/10.1139/t07-016

    Article  Google Scholar 

  39. Rougier E, Knight E, Lei Z, Munjiza A (2015) Recent developments in the combined finite-discrete element method. In: 1st Pan-American congress on computational mechanics. p 101

  40. Rougier E, Knight EE, Munjiza A (2020) Special issue titled “combined finite discrete element method and virtual experimentation.” Comput Part Mech 7(5):763–763. https://doi.org/10.1007/s40571-020-00364-z

    Article  Google Scholar 

  41. Sanchez M, Atique A, Kim S, Romero E, Zielinski M (2013) Exploring desiccation cracks in soils using a 2D profile laser device. Acta Geotech 8(6):583–596. https://doi.org/10.1007/s11440-013-0272-1

    Article  Google Scholar 

  42. Sánchez M, Manzoli OL, Guimarães LJ (2014) Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Comput Geotech 62:27–39

    Article  Google Scholar 

  43. Sentenac P, Zielinski M, Baer JU (2009) Clay fine fissuring monitoring using miniature geo-electrical resistivity arrays. Environ Earth Sci 59(1):205–214. https://doi.org/10.1007/s12665-009-0017-5

    Article  Google Scholar 

  44. Shan P, Lai X (2019) Mesoscopic structure PFC∼2D model of soil rock mixture based on digital image. J Vis Commun Image Represent 58:407–415. https://doi.org/10.1016/j.jvcir.2018.12.015

    Article  Google Scholar 

  45. Sima J, Jiang M, Zhou C (2014) Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling. Comput Geotech 56:168–180. https://doi.org/10.1016/j.compgeo.2013.12.003

    Article  Google Scholar 

  46. Sun G, Lin S, Zheng H, Tan Y, Sui T (2020) The virtual element method strength reduction technique for the stability analysis of stony soil slopes. Comput Geotech 119:103349. https://doi.org/10.1016/j.compgeo.2019.103349

    Article  Google Scholar 

  47. Tang C-S, Shi B, Liu C, Suo W-B, Gao L (2011) Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Appl Clay Sci 52(1–2):69–77. https://doi.org/10.1016/j.clay.2011.01.032

    Article  Google Scholar 

  48. Tang C, Shi B, Liu C, Zhao L, Wang B (2008) Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Eng Geol 101(3–4):204–217. https://doi.org/10.1016/j.enggeo.2008.05.005

    Article  Google Scholar 

  49. Tatone BS, Grasselli G (2015) A calibration procedure for two-dimensional laboratory-scale hybrid finite–discrete element simulations. Int J Rock Mech Min Sci 75:56–72

    Article  Google Scholar 

  50. Trabelsi H, Hadrich B, Guiras H (2018) Evaporation, shrinkage and intrinsic permeability of unsaturated clayey soil: analytical modelling versus experimental data. Arab J Geosci. https://doi.org/10.1007/s12517-018-3507-5

    Article  Google Scholar 

  51. Trabelsi H, Jamei M, Zenzri H, Olivella S (2012) Crack patterns in clayey soils: experiments and modeling. Int J Numer Anal Meth Geomech 36(11):1410–1433

    Article  Google Scholar 

  52. Trabelsi H, Romero E, Jamei M (2018) Tensile strength during drying of remoulded and compacted clay: the role of fabric and water retention. Appl Clay Sci 162:57–68. https://doi.org/10.1016/j.clay.2018.05.032

    Article  Google Scholar 

  53. Tran KM, Bui HH, Sánchez M, Kodikara J (2020) A DEM approach to study desiccation processes in slurry soils. Comput Geotech 120:103448. https://doi.org/10.1016/j.compgeo.2020.103448

    Article  Google Scholar 

  54. Tran HT, Wang Y, Nguyen GD, Kodikara J, Sanchez M, Bui HH (2019) Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach. Comput Geotech 116:103209

    Article  Google Scholar 

  55. Vahab M, Khoei A, Khalili N (2019) An X-FEM technique in modeling hydro-fracture interaction with naturally-cemented faults. Eng Fract Mech 212:269–290

    Article  Google Scholar 

  56. Vo TD, Pouya A, Hemmati S (2019) Modelling desiccation crack geometry evolution in clayey soils by analytical and numerical approaches. Can Geotech J 56(5):720–729

    Article  Google Scholar 

  57. Vo TD, Pouya A, Hemmati S, Tang AM (2017) Numerical modelling of desiccation cracking of clayey soil using a cohesive fracture method. Comput Geotech 85:15–27. https://doi.org/10.1016/j.compgeo.2016.12.010

    Article  Google Scholar 

  58. Wang L-L, Tang C-S, Shi B, Cui Y-J, Zhang G-Q, Hilary I (2018) Nucleation and propagation mechanisms of soil desiccation cracks. Eng Geol 238:27–35. https://doi.org/10.1016/j.enggeo.2018.03.004

    Article  Google Scholar 

  59. Xu J, Tang X, Wang Z, Feng Y, Bian K (2020) Investigating the softening of weak interlayers during landslides using nanoindentation experiments and simulations. Eng Geol 277:105801. https://doi.org/10.1016/j.enggeo.2020.105801

    Article  Google Scholar 

  60. Yan C, Fan H, Huang D, Wang G (2021) A 2D mixed fracture–pore seepage model and hydromechanical coupling for fractured porous media. Acta Geotech. https://doi.org/10.1007/s11440-021-01183-z

    Article  Google Scholar 

  61. Yan C, Fan H, Zheng Y, Zhao Y, Ning F (2020) Simulation of the thermal shock of brittle materials using the finite-discrete element method. Eng Anal Boundary Elem 115:142–155. https://doi.org/10.1016/j.enganabound.2020.03.013

    Article  MathSciNet  MATH  Google Scholar 

  62. Yan C, Jiao Y-Y (2018) A 2D fully coupled hydro-mechanical finite-discrete element model with real pore seepage for simulating the deformation and fracture of porous medium driven by fluid. Comput Struct 196:311–326. https://doi.org/10.1016/j.compstruc.2017.10.005

    Article  Google Scholar 

  63. Yan C, Jiao YY (2019) A 2D discrete heat transfer model considering the thermal resistance effect of fractures for simulating the thermal cracking of brittle materials. Acta Geotech 15:1–17

    Google Scholar 

  64. Yan C, Jiao YY (2019) FDEM-TH3D: a three-dimensional coupled hydrothermal model for fractured rock. Int J Numer Anal Meth Geomech 43(1):415–440

    Article  Google Scholar 

  65. Yan C, Jiao Y-Y, Yang S (2019) A 2D coupled hydro-thermal model for the combined finite-discrete element method. Acta Geotech 14(2):403–416. https://doi.org/10.1007/s11440-018-0653-6

    Article  Google Scholar 

  66. Yan C, Jiao Y-Y, Zheng H (2018) A fully coupled three-dimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing. Comput Geotech 96:73–89

    Article  Google Scholar 

  67. Yan C, Jiao YY, Zheng H (2019) A three-dimensional heat transfer and thermal cracking model considering the effect of cracks on heat transfer. Int J Numer Anal Meth Geomech 43(10):1825–1853. https://doi.org/10.1002/nag.2937

    Article  Google Scholar 

  68. Yan C, Ren Y, Yang Y (2020) A 3D thermal cracking model for rockbased on the combined finite–discrete element method. Comput Part Mech 7:881–901. https://doi.org/10.1007/s40571-019-00281-w

    Article  Google Scholar 

  69. Yan C, Tong Y (2020) Calibration of microscopic penalty parameters in the combined finite-discrete element method. Int J Geomech 20(7):04020092. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001686

    Article  Google Scholar 

  70. Yan C, Wang X, Huang D, Wang G (2021) A new 3D continuous-discontinuous heat conduction model and coupled thermomechanical model for simulating the thermal cracking of brittle materials. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2021.111123

    Article  Google Scholar 

  71. Yan C, Yang Y, Wang G (2021) A new 2D continuous-discontinuous heat conduction model for modeling heat transfer and thermal cracking in quasi-brittle materials. Comput Geotech. https://doi.org/10.1016/j.compgeo.2021.104231

    Article  Google Scholar 

  72. Yan C, Zheng H (2017) A new potential function for the calculation of contact forces in the combined finite-discrete element method. Int J Numer Anal Method Geomech 41(2):265–283. https://doi.org/10.1002/nag.2559

    Article  Google Scholar 

  73. Yan C, Zheng H (2016) A two-dimensional coupled hydro-mechanical finite-discrete model considering porous media flow for simulating hydraulic fracturing. Int J Rock Mech Min Sci 88:115–128. https://doi.org/10.1016/j.ijrmms.2016.07.019

    Article  Google Scholar 

  74. Yan C, Zheng H (2017) Three-dimensional hydromechanical model of hydraulic fracturing with arbitrarily discrete fracture networks using finite-discrete element method. Int J Geomech 17(6):04016133

    Article  Google Scholar 

  75. Yan C, Zheng H (2017) FDEM-flow3D: a 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing. Comput Geotech 81:212–228

    Article  Google Scholar 

  76. Yan C, Zheng H (2017) A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock. Int J Rock Mech Min Sci 91:170–178. https://doi.org/10.1016/j.ijrmms.2016.11.023

    Article  Google Scholar 

  77. Yan C, Zheng Y, Huang D, Wang G (2021) A coupled contact heat transfer and thermal cracking model for discontinuous and granular media. Comput Methods Appl Mech Eng 375(1):113587. https://doi.org/10.1016/j.cma.2020.113587

    Article  MathSciNet  MATH  Google Scholar 

  78. Yan C, Zheng H, Sun G, Ge X (2016) Combined finite-discrete element method for simulation of hydraulic fracturing. Rock Mech Rock Eng 49(4):1389–1410. https://doi.org/10.1007/s00603-015-0816-9

    Article  Google Scholar 

  79. Yao M, Anandarajah A (2003) Three-dimensional discrete element method of analysis of clays. J Eng Mech 129(6):585–596

    Article  Google Scholar 

  80. Yu B, El-Zein A (2019) Experimental investigation of the effect of airgaps in preventing desiccation of bentonite in geosynthetic clay liners exposed to high temperatures. Geotext Geomembr 47(2):142–153. https://doi.org/10.1016/j.geotexmem.2018.12.002

    Article  Google Scholar 

  81. Zheng Y, Chen C, Liu T, Ren Z (2021) A new method of assessing the stability of anti-dip bedding rock slopes subjected to earthquake. Bull Eng Geol Environ 80(5:):3693–3710. https://doi.org/10.1007/s10064-021-02188-4

    Article  Google Scholar 

  82. Zielinski M, Sánchez M, Romero E, Sentenac P (2011) Assessment of water retention behaviour in compacted fills. Proc Inst Civil Eng Geotech Eng 164(2):139–148

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11872340 and 11602006; the Hong Kong Scholars Program (XJ2019040, HKSP19EG04); Hong Kong Research Grants Council grant 16214220; the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUG170657, CUGGC09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Wang, T., Ke, W. et al. A 2D FDEM-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking. Acta Geotech. 16, 2609–2628 (2021). https://doi.org/10.1007/s11440-021-01297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01297-4

Keywords

Navigation