Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Establishing electron diffraction in chemical crystallography

Abstract

The emerging field of 3D electron diffraction (3D ED) opens new opportunities for structure determination from sub-micrometre-sized crystals. Although the foundations of this technology emerged earlier, the past decade has seen developments in cryo-electron microscopy and (X-ray) crystallography that particularly enable the widespread use of 3D ED. This Perspective describes to chemists and chemical crystallographers just how similar electron and X-ray diffraction are and discusses their complementary aspects. We wish to establish 3D ED in the broader chemistry community, such that electron crystallography becomes a common part of the analytical chemistry toolkit. With a suitable instrument at their disposal, every skilled crystallographer can quickly learn to perform structure determinations using 3D ED.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isosurface maps derived from X-ray diffraction and electron diffraction data.
Fig. 2: Theoretical scattering factors for X-ray, electron and neutron diffraction experiments.
Fig. 3: X-ray and electron diffraction involve crystals of different sizes.
Fig. 4: Three common methods exist to prepare electron diffraction samples from dry powders.

Similar content being viewed by others

References

  1. Heinke, F. et al. Structure and thermoelectric properties of the silver lead bismuth selenides Ag5Pb9Bi19Se40 and AgPb3Bi7Se14. Dalton Trans. 47, 12431–12438 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Ende, M. et al. High-pressure behavior of nickel sulfate monohydrate: Isothermal compressibility, structural polymorphism, and transition pathway. Inorg. Chem. 59, 6255–6266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parsons, S., Flack, H. D. & Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B69, 249–259 (2013).

    Google Scholar 

  4. Parsons, S. Determination of absolute configuration using X-ray diffraction. Tetrahedron Asymmetry 28, 1304–1313 (2017).

    Article  CAS  Google Scholar 

  5. Krupp, F., Frey, W. & Richert, C. Absolute configuration of small molecules by co-crystallization. Angew. Chem. Int. Ed. 59, 15875–15879 (2020).

    Article  CAS  Google Scholar 

  6. Dimmeler, E., Vossen, O. & Schröder, R. R. Determination of lattice-transform density profiles for multilayered three-dimensional microcrystals in electron crystallography. J. Appl. Crystallogr. 33, 1102–1112 (2000).

    Article  CAS  Google Scholar 

  7. Dimmeler, E. & Schröder, R. R. Global least-squares determination of Eulerian angles from single electron diffraction patterns of tilted crystals. J. Appl. Crystallogr. 33, 1088–1101 (2000).

    Article  CAS  Google Scholar 

  8. Kolb, U. & Matveeva, G. N. Electron crystallography on polymorphic organics. Z. Kristallogr. 218, 259–268 (2003).

    Article  CAS  Google Scholar 

  9. Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 107, 507–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 225, 94–102 (2010).

    Article  CAS  Google Scholar 

  11. Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gemmi, M. et al. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 5, 1315–1329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gemmi, M. & Lanza, A. E. 3D electron diffraction techniques. Acta. Crystallogr. B75, 495–504 (2019).

    Google Scholar 

  14. Nannenga, B. L. & Gonen, T. The cryo-EM method microcrystal electron diffraction (MicroED). Nat. Methods 16, 369–379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, Z., Grape, E. S., Li, J., Inge, A. K. & Zou, X. 3D electron diffraction as an important technique for structure elucidation of metal–organic frameworks and covalent organic frameworks. Coord. Chem. Rev. 427, 213583 (2021).

    Article  CAS  Google Scholar 

  16. Gruene, T. et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 57, 16313–16317 (2018).

    Article  CAS  Google Scholar 

  17. Jones, C. G. et al. The cryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sitsel, O. & Raunser, S. Big insights from tiny crystals. Nat. Chem. 11, 106–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Nangia, A. K. & Desiraju, G. R. Crystal engineering: an outlook for the future. Angew. Chem. Int. Ed. 58, 4100–4107 (2019).

    Article  CAS  Google Scholar 

  20. Guzmán-Afonso, C. et al. Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nat. Commun. 10, 3537 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang, Y. et al. Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chem. Commun. 53, 7018–7021 (2017).

    Article  CAS  Google Scholar 

  22. Gemmi, M. & Oleynikov, P. Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr. 228, 51–58 (2013).

    Article  CAS  Google Scholar 

  23. Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F. & Nicolopoulos, S. Fast electron diffraction tomography. J. Appl. Crystallogr. 48, 718–727 (2015).

    Article  CAS  Google Scholar 

  24. Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boullay, P., Palatinus, L. & Barrier, N. Precession electron diffraction tomography for solving complex modulated structures: the case of Bi5Nb3O15. Inorg. Chem. 52, 6127–6135 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Reimer, L. & Kohl, H. Transmission Electron Microscopy (Springer, 2008).

  27. Carter, C. B. & Williams, D. B. Transmission Electron Microscopy (Springer, 2016).

  28. Zuo, J. M. & Spence, J. C. H. Advanced Transmission Electron Microscopy (Springer, 2016).

  29. Clegg, W. Distortions, deviations and alternative facts: reliability in crystallography. IUCrJ 8, 4–11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Danelius, E., Halaby, S., van der Donk, W. A. & Gonen, T. MicroED in natural product and small molecule research. Nat. Prod. Rep. 38, 423–431 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Kunde, T. & Schmidt, B. M. Microcrystal electron diffraction (MicroED) for small-molecule structure determination. Angew. Chem. Int. Ed. 58, 666–668 (2019).

    Article  CAS  Google Scholar 

  32. Lanza, A. et al. Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCrJ 6, 178–188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arndt, U. W. & Wonacott, A. J. (eds) The Rotation Method in Crystallography (North-Holland, 1977).

  34. Pflugrath, J. W. Diffraction-data processing for electronic detectors: theory and practice. Methods Enzymol. 276, 286–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Leslie, A. G. W. The integration of macromolecular diffraction data. Acta Crystallogr. D62, 48–57 (2006).

    CAS  Google Scholar 

  36. Kabsch, W. XDS. Acta Crystallogr. D66, 125–132 (2010).

    Google Scholar 

  37. Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. D74, 506–518 (2018).

    Google Scholar 

  38. Burla, M. C. et al. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 48, 306–309 (2015).

    Article  CAS  Google Scholar 

  39. Sheldrick, G. M. SHELXT — integrated space-group and crystal-structure determination. Acta Crystallogr. A71, 3–8 (2015).

    Google Scholar 

  40. Palatinus, L. & Chapuis, G. SUPERFLIP — a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007).

    Article  CAS  Google Scholar 

  41. Petříček, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).

    Article  CAS  Google Scholar 

  42. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Crystallogr. 36, 1487 (2003).

    Article  CAS  Google Scholar 

  43. Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. OLEX: new software for visualization and analysis of extended crystal structures. J. Appl. Crystallogr. 36, 1283–1284 (2003).

    Article  CAS  Google Scholar 

  44. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Authier, A. Dynamical Theory of X-Ray Diffraction (Oxford Univ. Press, 2001).

  46. Palatinus, L., Petříček, V. & Corrêa, C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. A71, 235–244 (2015).

    Google Scholar 

  47. Palatinus, L. et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. B71, 740–751 (2015).

    Google Scholar 

  48. Palatinus, L. et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. B75, 512–522 (2019).

    Google Scholar 

  49. Hynek, J., Brázda, P., Rohlíček, J., Londesborough, M. G. S. & Demel, J. Phosphinic acid based linkers: building blocks in metal–organic framework chemistry. Angew. Chem. Int. Ed. 57, 5016–5019 (2018).

    Article  CAS  Google Scholar 

  50. Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 364, 667–669 (2019).

    Article  PubMed  CAS  Google Scholar 

  51. Debost, M. et al. Synthesis of discrete CHA zeolite nanocrystals without organic templates for selective CO2 capture. Angew. Chem. Int. Ed. 59, 23491–23495 (2020).

    Article  CAS  Google Scholar 

  52. Palatinus, L. in The 41st Ad Hoc Workshop on Jana Electron Diffraction http://jana.fzu.cz/w041.html (2021).

  53. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Diederichs, K. & Karplus, P. A. Better models by discarding data? Acta Crystallogr. D69, 1215–1222 (2013).

    Google Scholar 

  55. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D69, 1204–1214 (2013).

    Google Scholar 

  56. Rupp, B. Against method: Table 1 — cui bono? Structure 26, 919–923 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Vaĭnshteĭn, B. K. Structure Analysis by Electron Diffraction (Pergamon, 1964).

  58. Palatinus, L. et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 355, 166–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Hynes, R. C. & Le Page, Y. Sucrose, a convenient test crystal for absolute structures. J. Appl. Crystallogr. 24, 352–354 (1991).

    Article  CAS  Google Scholar 

  60. Escudero-Adán, E. C., Benet-Buchholz, J. & Ballester, P. The use of Mo radiation in the assignment of the absolute configuration of light-atom molecules; the importance of high-resolution data. Acta Crystallogr. B70, 660–668 (2014).

    Google Scholar 

  61. Derewenda, Z. S. On wine, chirality and crystallography. Acta Crystallogr. A64, 246–258 (2008).

    Article  CAS  Google Scholar 

  62. Burmester, C. & Schröder, R. Solving the phase problem in protein electron crystallography: multiple isomorphous replacement and anomalous dispersion as alternatives to imaging. Scanning Microsc. 11, 323–334 (1997).

    Google Scholar 

  63. Ma, Y., Oleynikov, P. & Terasaki, O. Electron crystallography for determining the handedness of a chiral zeolite nanocrystal. Nat. Mater. 16, 755–759 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Jansen, J., Tang, D., Zandbergen, H. W. & Schenk, H. MSLS, a least-squares procedure for accurate crystal structure refinement from dynamical electron diffraction patterns. Acta Crystallogr. A54, 91–101 (1998).

    Article  CAS  Google Scholar 

  65. Wang, Y., Yang, T., Xu, H., Zou, X. & Wan, W. On the quality of the continuous rotation electron diffraction data for accurate atomic structure determination of inorganic compounds. J. Appl. Crystallogr. 51, 1094–1101 (2018).

    Article  CAS  Google Scholar 

  66. Ångström, J., Chen, H. & Wan, W. Accurate lattice-parameter determination from electron diffraction tomography data using two-dimensional diffraction vectors. J. Appl. Crystallogr. 51, 982–989 (2018).

    Article  Google Scholar 

  67. Fröjdh, E. et al. Discrimination of aluminum from silicon by electron crystallography with the JUNGFRAU detector. Crystals 10, 1148 (2020).

    Article  CAS  Google Scholar 

  68. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B58, 364–369 (2002).

    Article  CAS  Google Scholar 

  69. Simancas, J. et al. Ultrafast electron diffraction tomography for structure determination of the new zeolite ITQ-58. J. Am. Chem. Soc. 138, 10116–10119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maki-Yonekura, S., Hamaguchi, T., Naitow, H., Takaba, K. & Yonekura, K. Advances in cryo-EM and ED with a cold-field emission beam and energy filtration — refinements of the CRYO ARM 300 system in RIKEN SPring-8 center. Microscopy 70, 232–240 (2020).

    Article  Google Scholar 

  71. Wennmacher, J. T. C. et al. 3D-structured supports create complete data sets for electron crystallography. Nat. Commun. 10, 3316 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Andrusenko, I. et al. The crystal structure of orthocetamol solved by 3D electron diffraction. Angew. Chem. Int. Ed. 58, 10919–10922 (2019).

    Article  CAS  Google Scholar 

  73. de la Cruz, M. J. et al. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 14, 399–402 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Clabbers, M. T. & Xu, H. Microcrystal electron diffraction in macromolecular and pharmaceutical structure determination. Drug Discov. Today Technol. https://doi.org/10.1016/j.ddtec.2020.12.002 (2020).

    Article  PubMed  Google Scholar 

  75. Luft, J. R. & DeTitta, G. T. A method to produce microseed stock for use in the crystallization of biological macromolecules. Acta Crystallogr. D55, 988–993 (1999).

    CAS  Google Scholar 

  76. D’Arcy, A., Villard, F. & Marsh, M. An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr. D63, 550–554 (2007).

    Google Scholar 

  77. Stevenson, H. P. et al. Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr. D72, 603–615 (2016).

    Google Scholar 

  78. Zhang, Y.-B. et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135, 16336–16339 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Leubner, S. et al. Expanding the variety of zirconium-based inorganic building units for metal–organic frameworks. Angew. Chem. Int. Ed. 58, 10995–11000 (2019).

    Article  CAS  Google Scholar 

  80. Cui, P. et al. An expandable hydrogen-bonded organic framework characterized by three-dimensional electron diffraction. J. Am. Chem. Soc. 142, 12743–12750 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsuda, T., Kawakami, K., Mochizuki, E. & Kuwabata, S. Ionic liquid-based transmission electron microscopy for herpes simplex virus type 1. Biophys. Rev. 10, 927–929 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kashin, A. S. & Ananikov, V. P. Monitoring chemical reactions in liquid media using electron microscopy. Nat. Rev. Chem. 3, 624–637 (2019).

    Article  CAS  Google Scholar 

  83. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Kumar, S. & Adams, W. Electron beam damage in high temperature polymers. Polymer 31, 15–19 (1990).

    Article  CAS  Google Scholar 

  85. Garman, E. F. Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr. D66, 339–351 (2010).

    Google Scholar 

  86. Kolb, U., Gorelik, T. E., Mugnaioli, E. & Stewart, A. Structural characterization of organics using manual and automated electron diffraction. Polym. Rev. 50, 385–409 (2010).

    Article  CAS  Google Scholar 

  87. Leijten, Z. J. W. A., Keizer, A. D. A., de With, G. & Friedrich, H. Quantitative analysis of electron beam damage in organic thin films. J. Phys. Chem. C 121, 10552–10561 (2017).

    Article  CAS  Google Scholar 

  88. Nass, K. Radiation damage in protein crystallography at X-ray free-electron lasers. Acta Crystallogr. D75, 211–218 (2019).

    Google Scholar 

  89. Christensen, J. et al. Radiation damage in small-molecule crystallography: fact not fiction. IUCrJ 6, 703–713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ravelli, R. B., Leiros, H.-K. S., Pan, B., Caffrey, M. & McSweeney, S. Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Schiltz, M. et al. Phasing in the presence of severe site-specific radiation damage through dose-dependent modelling of heavy atoms. Acta Crystallogr. D Biol. Crystallogr. 60, 1024–1031 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. de Sanctis, D. & Nanao, M. H. Segmenting data sets for RIP. Acta Crystallogr. D68, 1152–1162 (2012).

    Google Scholar 

  93. Martynowycz, M. W., Hattne, J. & Gonen, T. Experimental phasing of MicroED data using radiation damage. Structure 28, 458–464.e2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bricogne, G. Micro-ED “pushing the frontiers” again … but which frontiers? CCP4BB mailing list. JISCMail https://www.jiscmail.ac.uk/cgi-bin/wa-jisc.exe?A2=CCP4BB;21969684.2004 (2020).

  95. Tsirelson, V. G. et al. Quantitative analysis of the electrostatic potential in rock-salt crystals using accurate electron diffraction data. J. Phys. Chem. B 105, 5068–5074 (2001).

    Article  CAS  Google Scholar 

  96. Avilov, A., Lepeshov, G., Pietsch, U. & Tsirelson, V. Multipole analysis of the electron density and electrostatic potential in germanium by high-resolution electron diffraction. J. Phys. Chem. Solids 62, 2135–2142 (2001).

    Article  CAS  Google Scholar 

  97. Avilov, A. in Uniting Electron Crystallography and Powder Diffraction 349–357 (Springer, 2012).

  98. Hansen, N. K. & Coppens, P. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr. A34, 909–921 (1978).

    Article  CAS  Google Scholar 

  99. Su, Z. & Coppens, P. On the mapping of electrostatic properties from the multipole description of the charge density. Acta Crystallogr. A48, 188–197 (1992).

    Article  CAS  Google Scholar 

  100. Michael, D. & Mingos, P. (eds) The Chemical Bond I (Springer, 2016).

  101. Kumar Shyam Vinod, P., Raghavendra, V. & Subramanian, V. Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J. Chem. Sci. 128, 1527–1536 (2016).

    Article  CAS  Google Scholar 

  102. Genoni, A. et al. Quantum crystallography: current developments and future perspectives. Chem. Eur. J. 24, 10881–10905 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Gruza, B., Chodkiewicz, M. L., Krzeszczakowska, J. & Dominiak, P. M. Refinement of organic crystal structures with multipolar electron scattering factors. Acta Crystallogr. A76, 92–109 (2020).

    Google Scholar 

  104. Jayatilaka, D. & Dittrich, B. X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Acta Crystallogr. A64, 383–393 (2008).

    Article  CAS  Google Scholar 

  105. Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. Hirshfeld atom refinement. IUCrJ 1, 361–379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fugel, M. et al. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2. IUCrJ 5, 32–44 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  108. Bergmann, J., Davidson, M., Oksanen, E., Ryde, U. & Jayatilaka, D. fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins. IUCrJ 7, 158–165 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kleemiss, F. et al. Accurate crystal structures and chemical properties from NoSpherA2. Chem. Sci. 12, 1675–1692 (2021).

    Article  CAS  Google Scholar 

  110. Yonekura, K., Kato, K., Ogasawara, M., Tomita, M. & Toyoshima, C. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. Proc. Natl Acad. Sci. USA 112, 3368–3373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yonekura, K. et al. Ionic scattering factors of atoms that compose biological molecules. IUCrJ 5, 348–353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Johnson, N. Electron diffraction data in the CSD. CCDC https://www.ccdc.cam.ac.uk/Community/blog/2020-05-04-electron-diffraction-data-in-the-csd/ (2020).

  113. Wang, B., Zou, X. & Smeets, S. Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination. IUCrJ 6, 854–867 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bücker, R. et al. Serial protein crystallography in an electron microscope. Nat. Commun. 11, 996 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Losev, E. A., Zakharov, B. A., Drebushchak, T. N. & Boldyreva, E. V. Glycinium semi-malonate and a glutaric acid–glycine cocrystal: new structures with short O—H…O hydrogen bonds. Acta. Crystallogr. C67, o297–o300 (2011).

    Google Scholar 

  116. Broadhurst, E. T. et al. Polymorph evolution during crystal growth studied by 3D electron diffraction. IUCrJ 7, 5–9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Holstein, J. J., Hübschle, C. B. & Dittrich, B. Electrostatic properties of nine fluoroquinolone antibiotics derived directly from their crystal structure refinements. CrystEngComm 14, 2520–2531 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

T.G. and J.J.H. drafted the manuscript. All authors contributed to the final version.

Corresponding authors

Correspondence to Tim Gruene or Julian J. Holstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Dedication

We dedicate this manuscript to Prof. Christian Robl on the occasion of his 65th birthday

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruene, T., Holstein, J.J., Clever, G.H. et al. Establishing electron diffraction in chemical crystallography. Nat Rev Chem 5, 660–668 (2021). https://doi.org/10.1038/s41570-021-00302-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00302-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing