Skip to main content

Advertisement

Log in

A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

With the alarming rise in antimicrobial resistance, phage therapy represents a new paradigm for combating antibiotic-resistant infectious diseases that is worth exploring for its clinical success. With this scenario, the present study aimed at evaluating the in vivo potential of phage MR-5 (broad host range Staphylococcus aureus phage) against soft tissue infections induced by methicillin-resistant S. aureus (MRSA). Also, the usefulness of relatively simple murine air pouch as a dual-purpose model (to study both anti-bacterial and anti-inflammatory parameters) in the field of phage therapeutics has been put to test. Murine air pouch model was established with experimental skin infection induced by S. aureus ATCC 43,300 followed by subcutaneous administration of phage alone as well as along with linezolid. Phage MR-5 alone and in combination with linezolid (showing synergy) brought significant reduction in the bacterial load (both extracellular as well as intracellular) that led to faster resolution of pouch infection. The main conclusions surfaced from the present study include the following: (a) murine air pouch model represents a simple useful model (mimicking subcutaneous skin infection) for studying anti-bacterial potencies of drug candidates. Therefore, its use and further adaptations especially in field of phage therapeutics is highly advocated and (b) phage MR-5 proved to be a potential therapeutic candidate against treatment of MRSA-induced skin and soft tissue infections and use of combination therapy is strongly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All the data pertaining the above study is available within the manuscript.

References

  • Abedon ST (2019) Phage-antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics (Basel) 8: 182. https://doi.org/10.3390/antibiotics8040182

  • Akturk E, Oliveira H, Santos SB et al (2019) Synergistic action of phage and antibiotics: parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics (Basel) 8:103. https://doi.org/10.3390/antibiotics8030103

  • Al Kindi A, Alkahtani AM, Nalubega M et al (2019) Staphylococcus aureus internalized by skin keratinocytes evade antibiotic killing. Front Microbiol 10:2242. https://doi.org/10.3389/fmicb.2019.02242

  • Al-Banna NA, Pavlovic D, Bac VH et al (2013) Acute administration of antibiotics modulates intestinal capillary perfusion and leukocyte adherence during experimental sepsis. Int J Antimicrob Agents 41: 536–543. https://doi.org/10.1016/j.ijantimicag.2013.02.024

  • Almeida DV, Omansen TF, Li SY et al (2019) Oxazolidinones can replace clarithromycin in combination with rifampin in a mouse model of buruli ulcer. Antimicrob Agents Chemother 63(3):e02171–18. https://doi.org/10.1128/AAC.02171-18

  • Andes D, Craig WA (2003) Pharmacodynamics of the new des-f(6)-quinolone garenoxacin in a murine thigh infection model. Antimicrob Agents Chemother 47:3935–3941. https://doi.org/10.1128/aac.47.12.3935-3941.2003

  • Anilkumar K, Reddy GV, Azad R et al (2017) Evaluation of anti-inflammatory properties of isoorientin isolated from tubers of Pueraria tuberosa. Oxid Med Cell Longev 2017:5498054. https://doi.org/10.1155/2017/5498054

  • Beibei L, Yun C, Mengli C, Nan B, Xuhong Y, Rui W (2010) Linezolid versus vancomycin for the treatment of gram-positive bacterial infections: meta-analysis of randomised controlled trials. Int J Antimicrob Agents 35:3–12. https://doi.org/10.1016/j.ijantimicag.2009.09.013

  • Bestebroer J, Poppelier MJ, Ulfman LH et al (2007) Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109(7):2936–43. https://doi.org/10.1182/blood-2006-06-015461

    Article  CAS  PubMed  Google Scholar 

  • Bestebroer J, van Kessel KP, Azouagh H et al (2009) Staphylococcal SSL5 inhibits leukocyte activation by chemokines and anaphylatoxins. Blood 113(2):328–37. https://doi.org/10.1182/blood-2008-04-153882

    Article  CAS  PubMed  Google Scholar 

  • Bolon B, Stolina M, King C et al (2011) Rodent preclinical models for developing novel anti-arthritic molecules: comparative biology and preferred methods for evaluating efficacy. J Biomed Biotechnol 569068. https://doi.org/10.1155/2011/569068

  • Borysowski J, Wierzbicki P, Kłosowska D et al (2010) The effects of T4 and A3/R phage preparations on whole-blood monocyte and neutrophil respiratory bursts. Viral Immunol 541–544. https://doi.org/10.1089/vim.2010.0001

  • Capparelli R, Parlato M, Borriello G et al (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773

    Article  CAS  Google Scholar 

  • Chang RYK, Das T, Manos J et al (2019) Bacteriophage PEV20 and ciprofloxacin combination treatment enhances removal of pseudomonas aeruginosa biofilm isolated from cystic fibrosis and wound patients. AAPS J 21:49. https://doi.org/10.1208/s12248-019-0315-0

  • Chen KH, Huang YT, Liao CH et al (2015) In vitro activities of tedizolid and linezolid against Gram-positive cocci associated with acute bacterial skin and skin structure infections and pneumonia. Antimicrob Agents Chemother 59:6262–6265. https://doi.org/10.1128/AAC.00390-15

  • Chhibber S, Kaur J, Kaur S (2018) Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol 9:561. https://doi.org/10.3389/fmicb.2018.00561

  • Chhibber S, Kaur S, Kumari S (2008) Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol 57:1508–1513. https://doi.org/10.1099/jmm.0.2008/002873-0

    Article  PubMed  Google Scholar 

  • Chhibber S, Kaur T, Kaur S (2013) Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One 8:e56022. https://doi.org/10.1371/journal.pone.0056022

  • Cirioni O, Mocchegiani F, Ghiselli R et al (2010) Daptomycin and rifampin alone and in combination prevent vascular graft biofilm formation and emergence of antibiotic resistance in a subcutaneous rat pouch model of staphylococcal infection. Eur J Vasc Endovasc Surg 40:817–822. https://doi.org/10.1016/j.ejvs.2010.08.009

  • Colville-Nash P, Lawrence T (2003) Air pouch models of inflammation and modifications for the study of granuloma-mediated cartilage degradation. Methods Mol Biol 225:181–189. https://doi.org/10.1385/1-59259-374-7:181

  • D’Herelle F (1922) The bacteriophage: its role in immunity. Cornell University Library, Baltimore

    Google Scholar 

  • Dalhoff A, Frank G, Luckhaus G (1982) The granuloma pouch: an in vivo model for pharmacokinetic and chemotherapeutic investigations. I. Biochemical and histological characterization. Infection 10(6):354–360. https://doi.org/10.1007/BF01642299

  • David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687. https://doi.org/10.1128/CMR.00081-09

  • Drusano GL, Liu W, Kulawy R, Louie A (2011) Impact of granulocytes on the antimicrobial effect of tedizolid in a mouse thigh infection model. Antimicrob Agents Chemother 55(11):5300–5305. https://doi.org/10.1128/AAC.00502-11

  • Duarte DB, Vasko MR, Fehrenbacher JC (2012) Models of inflammation: carrageenan air pouch. Curr Protoc Pharmacol Chapter 5: Unit 5.6. https://doi.org/10.1002/0471141755.ph0506s56

  • Eteraf-Oskouei T, Akbarzadeh-Atashkhosrow A, Maghsudi M et al (2017) Effects of salbutamol on the inflammatory parameters and angiogenesis in the rat air pouch model of inflammation. Res Pharm Sci. 12:364–372. https://doi.org/10.4103/1735-5362.213981

  • Fevre C, Bestebroer J, Mebius MM et al (2014) Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil receptors as identified using secretome phage display. Cell Microbiol 16(11):1646–65. https://doi.org/10.1111/cmi.12313

    Article  CAS  PubMed  Google Scholar 

  • Fowler T, Wann ER, John D et al (2000) Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell β-1-integrins. Eur J Cell Biol 79:672–679. https://doi.org/10.1078/0171-9335-00104

  • Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3(12):948–58. https://doi.org/10.1038/nrmicro1289

    Article  CAS  PubMed  Google Scholar 

  • Franks Z, Campbell RA, Vieira de Abreu A et al (2013) Methicillin-resistant Staphylococcus aureus-induced thrombo-inflammatory response is reduced with timely antibiotic administration. Thromb Haemost 109:684–695. https://doi.org/10.1160/TH12-08-0543

  • French G (2003) Safety and tolerability of linezolid. J Antimicrob Chemother 51 Suppl 2:ii45–53. https://doi.org/10.1093/jac/dkg253

  • Garcia-Roca P, Mancilla-Ramirez J, Santos-Segura A et al (2006) Linezolid diminishes inflammatory cytokine production from human peripheral blood mononuclear cells. Arch Med Res 37:31–35. https://doi.org/10.1016/j.arcmed.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  • Garoy EY, Gebreab YB, Achila OO et al (2019) Methicillin-resistant Staphylococcus aureus (MRSA): prevalence and antimicrobial sensitivity pattern among patients—a multicenter study in Asmara, Eritrea. Can J Infect Dis Med Microbiol 8321834. https://doi.org/10.1155/2019/8321834

  • Gaspar EB, Sakai YI, Gaspari ED (2014) A mouse air pouch model for evaluating the immune response to Taenia crassiceps infection. Exp Parasitol 137:66–73. https://doi.org/10.1016/j.exppara.2013.12.005

  • Gee T, Ellis R, Marshall G et al (2001) Pharmacokinetics and tissue penetration of linezolid following multiple oral doses. Antimicrob Agents Chemother 45:1843–1846. https://doi.org/10.1128/AAC.45.6.1843-1846.2001

  • Gerson SL, Kaplan SL, Bruss JB et al (2002) Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother 46:2723–2726. https://doi.org/10.1128/aac.46.8.2723-2726.2002

  • Ghildiyal S, Gautam MK, Joshi VK et al (2015) Wound healing and antimicrobial activity of two classical formulations of Laghupanchamula in rats. J Ayurveda Integr Med 6:241–247. https://doi.org/10.4103/0975-9476.157952

  • Girard D (2014) Using the air pouch model for assessing in vivo inflammatory activity of nanoparticles. Int J Nanomedicine 9:1105–1107. https://doi.org/10.2147/IJN.S59636

  • Gisby J, Bryant J (2000) Efficacy of a new cream formulation of mupirocin: comparison with oral and topical agents in experimental skin infections. Antimicrob Agents Chemother 44:255–260. https://doi.org/10.1128/aac.44.2.255-260.2000

  • Górski A, Dąbrowska K, Międzybrodzki R et al (2017) Phages and immunomodulation. Future Microbiol. 12:905–914. https://doi.org/10.2217/fmb-2017-0049

  • Górski A, Kniotek M, Perkowska-Ptasińska A et al (2006) Bacteriophages and transplantation tolerance. Transplant Proc 38(1):331–333. https://doi.org/10.1016/j.transproceed.2005.12.073

  • Górski A, Międzybrodzki R, Borysowski J et al (2012) Phage as a modulator of immune responses. Practical implications for phage therapy. Adv Virus Res 83:41–71. https://doi.org/10.1016/B978-0-12-394438-2.00002-5

  • Green SL, Maddox JC, Huttenbach ED (2001) Linezolid and reversible myelosuppression. JAMA 285(10):1291. https://doi.org/10.1001/jama.285.10.1291

  • Hess DJ, Henry-Stanley MJ, Erickson EA et al (2003) Intracellular survival of Staphylococcus aureus within cultured enterocytes. J Surg Res 114:42–49. https://doi.org/10.1016/s0022-4804(03)00314-7

  • Hung CH, Kuo CF, Wang CH et al (2011) Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother 55:1358–1365. https://doi.org/10.1128/AAC.01123-10

  • Itoh S, Hamada E, Kamoshida G et al (2010) Staphylococcal superantigen-like protein 5 inhibits matrix metalloproteinase 9 from human neutrophils. Infect Immun 78(7):3298–3305. https://doi.org/10.1128/IAI.00178-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson M (2014) Evaluating the role of Hans Selye in the modern history of stress. In: Cantor D, Ramsden E, editors. Stress, Shock, and Adaptation in the Twentieth Century. Rochester (NY): University of Rochester Press; Chapter 1. Available from: https://www.ncbi.nlm.nih.gov/books/NBK349158/

  • Jończyk-Matysiak E, Lusiak-Szelachowska M, Kłak M et al (2015) The effect of bacteriophage preparations on intracellular killing of bacteria by phagocytes. J Immunol Res 1: 482863. https://doi.org/10.1155/2015/482863

  • Kaur S, Harjai K, Chhibber S (2012) Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sub-lethal concentrations of antibiotics. Appl Environ Microbiol 78:8227–8233. https://doi.org/10.1128/AEM.02371-12

  • Kaur S, Harjai K, Chhibber S (2014) Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages. Appl Microbiol Biotechnol 98:4653–4661. https://doi.org/10.1007/s00253-014-5643-5

  • Kaur S, Harjai K, Chhibber S (2016) In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One 11:e0157626. https://doi.org/10.1371/journal.pone.0157626

  • Kropinski AM (2018) Bacteriophage research—what we have learnt and what still needs to be addressed. Res Microbiol 169:481–487. https://doi.org/10.1016/j.resmic.2018.05.002

  • Kubica M, Guzik K, Koziel J et al (2008) A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 3:e1409. https://doi.org/10.1371/journal.pone.0001409

  • Kumari S, Harjai K, Chhibber S (2009) Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J Microbiol Biotechnol 19:622–628. https://doi.org/10.4014/jmb.0808.493

  • Kuter DJ, Tillotson GS (2001) Hematologic effects of antimicrobials: focus on the oxazolidinone linezolid. Pharmacotherapy 21(8):1010–1013. https://doi.org/10.1592/phco.21.11.1010.34517

  • Kutter E, De Vos D, Gvasalia G et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86. https://doi.org/10.2174/138920110790725401

  • Laarman AJ, Mijnheer G, Mootz JM et al (2012) Staphylococcus aureus Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 31(17):3607–19. https://doi.org/10.1038/emboj.2012.212

  • Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31:e00020–18. https://doi.org/10.1128/CMR.00020-18

  • Li MH, Luo YH, Lin CF et al (2011) Dextromethorphan efficiently increases bactericidal activity, attenuates inflammatory responses, and prevents Group A streptococcal sepsis. Antimicrob Agents Chemother 55:967–973. https://doi.org/10.1128/AAC.00950-10

  • Mishra R, Patel H, Goel B et al (2019) A Case of linezolid toxicity presenting as a sepsis mimic. Case Rep Crit Care 2019:2157674. https://doi.org/10.1155/2019/2157674

  • Murthy S, Gautam MK, Goel S et al (2013) Evaluation of in vivo wound healing activity of Bacopa monniera on different wound model in rats. Biomed Res Int 972028. https://doi.org/10.1155/2013/972028

  • Nair SP, Bischoff M, Senn MM et al (2003) The σB regulon influences internalization of Staphylococcus aureus by osteoblasts. Infect Immun 71: 4167–4170. https://doi.org/10.1128/iai.71.7.4167-4170.2003

  • Pabary R, Singh C, Morales S et al (2015) Anti-pseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother 60:744–751. https://doi.org/10.1128/AAC.01426-15

  • Patil KR, Mahajan UB, Unger BS et al (2019) animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phyto-pharmaceuticals. Int J Mol Sci 20:4367. https://doi.org/10.3390/ijms20184367

  • Pietrocola G, Nobile G, Rindi S et al (2017) Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front Cell Infect Microbiol 7:166. https://doi.org/10.3389/fcimb.2017.00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poeppl W, Tobudic S, Lingscheid T et al (2011) Daptomycin, fosfomycin, or both for treatment of methicillin-resistant Staphylococcus aureus osteomyelitis in an experimental rat model. Antimicrob Agents Chemother 55:4999–5003. https://doi.org/10.1128/AAC.00584-11

  • Przerwa A, Zimecki M, Switała-Jeleń K et al (2006) Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol 195:143–150. https://doi.org/10.1007/s00430-006-0011-4

  • Roach DR, Leung CY, Henry M et al (2017) Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22:38–47.e4. https://doi.org/10.1016/j.chom.2017.06.018

  • Secor PR, Sass G, Nazik H, Stevens DA (2017) Effect of acute predation with bacteriophage on intermicrobial aggression by Pseudomonas aeruginosa. PLoS One 12:e0179659. https://doi.org/10.1371/journal.pone.0179659

  • Selye H (1957) Effect of Inflammation upon the Growth of Transplantable Neoplasms as Demonstrated by the “Double Granuloma-Pouch” Technique. Br J Cancer 11(4):550–553

    Article  CAS  Google Scholar 

  • Singla S, Harjai K, Katare OP, Chhibber S (2016) Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS One 11(4):e0153777. https://doi.org/10.1371/journal.pone.0153777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soriano F, García-Corbeira P, Ponte C et al (1996) Correlation of pharmacodynamic parameters of five beta-lactam antibiotics with therapeutic efficacies in an animal model. Antimicrob Agents Chemother 40:2686–2690. https://doi.org/10.1128/AAC.40.12.2686

  • Swearengen JR (2018) Choosing the right animal model for infectious disease research. Animal Model Exp Med 1:100–108. https://doi.org/10.1002/ame2.12020

  • Tagliaferri TL, Jansen M, Horz HP (2019) Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol 9:22. https://doi.org/10.3389/fcimb.2019.00022

  • Takahashi G, Sato N, Yaegashi Y et al (2010) Effect of linezolid on cytokine production capacity and plasma endotoxin levels in response to lipopolysaccharide stimulation of whole blood. J Infect Chemother 16:94–99. https://doi.org/10.1007/s10156-009-0012-5

  • Thammavongsa V, Kim HK, Missiakas D et al (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13(9):529-543. https://doi.org/10.1038/nrmicro3521

  • Tkhilaishvili T, Winkler T, Müller M et al (2019) bacteriophages as adjuvant to antibiotics for the treatment of peri-prosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 64:e00924–19. https://doi.org/10.1128/AAC.00924-19

  • Van Belleghem JD, Clement F, Merabishvili M et al (2017) Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci Rep 7:8004. https://doi.org/10.1038/s41598-017-08336-9

  • Vandooren J, Berghmans N, Dillen C et al (2013) Intradermal air pouch leukocytosis as an in vivo test for nanoparticles. Int J Nanomedicine 8:4745–4756. https://doi.org/10.2147/IJN.S51628

  • Yue J, Dong BR, Yang M et al (2016) Linezolid versus vancomycin for skin and soft tissue infections. Cochrane Database Syst Rev 1:CD008056. https://doi.org/10.1002/14651858.CD008056.pub3

  • Zhang L, Hou X, Sun L et al (2018) Staphylococcus aureus bacteriophage suppresses LPS-induced inflammation in MAC-T bovine mammary epithelial cells. Front Microbiol 9:1614. https://doi.org/10.3389/fmicb.2018.01614

  • Zimecki M, Artym J, Kocieba M et al (2009) Effects of prophylactic administration of bacteriophages to immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiol 9:169. https://doi.org/10.1186/1471-2180-9-169

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: SC, SK. Performed the experiments: SK. Analyzed the data: SC, SK. Contributed reagents/materials/analysis tools: SC. Wrote the paper: SK.

Corresponding author

Correspondence to Sanjay Chhibber.

Ethics declarations

Ethical approval

The study was conducted and approved by the Institutional Animal Ethics Committee (Approval ID: IAEC/156) of the Panjab University, Chandigarh, India and performed in accordance with the guidelines of Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India, on animal experimentation.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Chhibber, S. A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus. Folia Microbiol 66, 959–972 (2021). https://doi.org/10.1007/s12223-021-00895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-021-00895-9

Navigation