Skip to main content
Log in

Application of Supersymmetric Quantum Mechanics to Calculate Resonance Energy and Wave Function of \(^{19}\)C Halo Nucleus

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this paper, we presented an elegant theoretical scheme to investigate the bound and resonance states in the \(^{19}\)C halo nucleus. The nucleus \(^{19}\)C being weakly bound one-neutron halo, can be treated as a two-body system consisting of the \(^{18}\)C core plus one outer core valence neutron. An effective core-nucleon potential is derived by folding a phenomenological nucleon-nucleon potential into the density distribution of the core nucleus. The two-body Schrödinger equation for the effective core-nucleon potential is solved to find the energies and wave functions of the bound states. The wave functions so obtained are used to construct a one-parameter family of isospectral potentials by the application of supersymmetric quantum mechanics. The newly constructed isospectral potentials are used in the Schrödinger equation to compute the resonant states. The calculated results are in excellent agreement with their corresponding observed values as found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A 729, 3 (2003)

    Article  ADS  Google Scholar 

  2. B. Acharya, C. Ji, D.R. Phillips, Implications of a matter-radius measurement for the structure of Carbon-22. Phys. Lett. B 723, 196 (2013)

    Article  ADS  MATH  Google Scholar 

  3. I. Tanihata et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  4. N. Michel et al., Two-neutron halo structure of \(^{31}\)F. Phys. Rev. C 101, 031301(R) (2020)

    Article  ADS  Google Scholar 

  5. J. Singh et al., Exploring two-neutron halo formation in the ground state of \( ^{29} \)F within a three-body model. Phys. Rev. C 101, 024310 (2020)

    Article  ADS  Google Scholar 

  6. K.P. Anjali et al., Studies on the existence of various 1p, 2p Halo isotopes via cluster decay of nuclei in superheavy region. Braz. Jour. Phys. 50, 71 (2020)

    Article  ADS  Google Scholar 

  7. M. Stanoiu et al., Study of drip-line nuclei through two-step fragmentation. Eur. Phys. J. A 20, 95 (2004)

    Article  ADS  Google Scholar 

  8. T. Yamaguchi, K. Tanaka et al., Nuclear reactions of \( ^{19,20} \)C on a liquid hydrogen target measured with the superconducting TOF spectrometer. Nucl. Phys. A 864, 1 (2011)

    Article  ADS  Google Scholar 

  9. J.M. Bang et al., Few-body aspects of Borromean halo nuclei. Phys. Rep. 264, 27 (1996)

    Article  ADS  Google Scholar 

  10. P. Banerjee, J.A. Tostevin, I.J. Thompson, Coulomb breakup of two-neutron halo nuclei. Phys. Rev. C 58, 1337 (1998)

    Article  ADS  Google Scholar 

  11. M. Brodeur et al., First direct mass measurement of the two-neutron halo nucleus \( ^{6} \)He and improved mass for the four-neutron halo \( ^{8} \)He. Phys. Rev. Lett. 108, 052504 (2012)

    Article  ADS  Google Scholar 

  12. Z. Ren, B. Chen, G. Xu, Z. Ma, W. Mittig, Structure of halo nuclei \(^{14}\)Be and \(^{32}\)Ne. Phys. Lett. B 351, 11 (1995)

    Article  ADS  Google Scholar 

  13. K. Tanaka et al., Observation of a large reaction cross section in the drip-line nucleus \( ^{22} \)C. Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  14. N. Kobayashi et al., One-and two-neutron removal reactions from the most neutron-rich carbon isotopes. Phys. Rev. C 86, 054604 (2012)

    Article  ADS  Google Scholar 

  15. L. Gaudefroy et al., Direct mass measurements of \( ^{19} \)B, \( ^{22} \)C, \( ^{29} \)F, \( ^{31} \)Ne, \( ^{34} \)Na and other light exotic nuclei. Phys. Rev. Lett. 109, 202503 (2012)

    Article  ADS  Google Scholar 

  16. Y. Togano et al., Interaction cross-section study of the two-neutron halo nucleus \( ^{22} \)C. Phys. Lett. B 761, 412 (2016)

    Article  ADS  Google Scholar 

  17. Z. Ren, B. Chen, Z. Ma, G. Xu, One-proton halo in \( ^{26} \)P and two-proton halo in \( ^{27} \)S. Phys. Rev. C 53, R572(R) (1996)

    Article  ADS  Google Scholar 

  18. A.A. Ibraheem, A.S. Hajjaji, M.E. Farid, Elastic scattering of one-proton halo nucleus \( ^{17} \)F on different mass targets using semi microscopic potentials. Rev. Mex. Fis. 65, 168 (2019)

    Article  Google Scholar 

  19. W.S. Hwash, Study of the two-proton halo nucleus \( ^{17} \)Ne. Int. J. Mod. Phys E 25, 1650105 (2016)

    Article  ADS  Google Scholar 

  20. B. Gönül, M. Yilmaz, Halo structure of \( ^{19} \)C via the (p, d) reaction. Few-Body Syst. 30, 211 (2001)

    ADS  Google Scholar 

  21. E.K. Warburton, B.A. Brown, Effective interactions for the 0p1s0d nuclear shell-model space. Phys. Rev. C 46, 923 (1992)

    Article  ADS  Google Scholar 

  22. D. Ridikas et al., 19-C: the heaviest one-neutron halo nucleus? Eur. Phys. Lett. 37, 385 (1997)

    Article  ADS  Google Scholar 

  23. D. Ridikas et al., Exploratory coupled channels calculations for loosely bound carbon isotopes. Nucl. Phys. A 628, 363 (1998)

    Article  ADS  Google Scholar 

  24. J.D. Bowman, A.M. Poskanzer, R.G. Korteling, G.W. Butler, Detection of neutron-excess isotopes of low-Z elements produced in high-energy nuclear reactions. Phys. Rev. C 9, 836 (1974)

    Article  ADS  Google Scholar 

  25. M. Thoennessen, Discovery of isotopes with Z\( \le \)10. At. Data Nucl. Data Tables 98, 43 (2012)

    Article  ADS  Google Scholar 

  26. T. Tarutina, A.R. Samana, F. Krmpotic, M.S. Hussein, Quasiparticle-rotor model description of carbon isotopes. Braz. J. Phys. 36, 1349 (2006)

    Article  ADS  Google Scholar 

  27. T. Nakamura et al., Coulomb dissociation of \( ^{19} \)C and its halo structure. Phys. Rev. Lett. 83, 1112 (1999)

    Article  ADS  Google Scholar 

  28. V. Maddalena et al., Single-neutron knockout reactions: application to the spectroscopy of \( ^{16,17,19} \)C. Phys. Rev. C 63, 024613 (2001)

    Article  ADS  Google Scholar 

  29. C. Yuan, T. Suzuki, T. Otsuka, F. Xu, N. Tsunoda, Shell-model study of boron, carbon, nitrogen, and oxygen isotopes with a monopole-based universal interaction. Phys. Rev. C 85, 064324 (2012)

    Article  ADS  Google Scholar 

  30. M. Stanoiu et al., Disappearance of the N=14 shell gap in the carbon isotopic chain. Phys. Rev. C 78, 034315 (2008)

    Article  ADS  Google Scholar 

  31. Z. Elekes et al., Low-lying excited states in \(^{17,19} \)C. Phys. Lett. B 614, 174 (2005)

    Article  ADS  Google Scholar 

  32. A. Ozawa et al., One- and two-neutron removal reactions from \( ^{19,20} \)C with a proton target. Phys. Rev. C 84, 064315 (2011)

    Article  ADS  Google Scholar 

  33. Y. Satou et al., Unbound excited states in \( ^{19,17} \)C. Phys. Lett. B 660, 320 (2008)

    Article  ADS  Google Scholar 

  34. M. Thoennessen et al., Observation of a low-lying neutron-unbound state in \( ^{19} \)C. Nucl. Phys. A 912, 1 (2013)

    Article  ADS  Google Scholar 

  35. A. Csótó, Proton skin of \( ^{8} \)B in a microscopic model. Phys. Lett. B 315, 24 (1993)

    Article  ADS  Google Scholar 

  36. A. Csótó, Neutron halo of \( ^{6} \)He in a microscopic model. Phys. Rev. C 48, 165 (1993)

    Article  ADS  Google Scholar 

  37. A. Csótó, Three-body resonances in \(^{6}\)He, \(^{6} \)Li and \(^{6}\)Be and the soft dipole mode problem of neutron halo nuclei. Phys. Rev. C 49, 3035 (1994)

    Article  ADS  Google Scholar 

  38. S. Aoyama, S. Mukai, K. Kato, K. Ikeda, Theoretical predictions of low-lying three-body resonance states in \( ^{6} \)He. Prog. Theor. Phys. 94, 343 (1995)

    Article  ADS  Google Scholar 

  39. A. Cobis, D.V. Fedorov, A.S. Jensen, Computations of Three-body continuum spectra. Phys. Rev. Lett. 79, 2411 (1997)

    Article  ADS  Google Scholar 

  40. A. Cobis, D.V. Fedorov, A.S. Jensen, Three-body halos. V. Computations of continuum spectra for Borromean nuclei. Phys. Rev. C 58, 1403 (1998)

    Article  ADS  Google Scholar 

  41. N. Tanaka, Y. Suzuki, K. Varga, Exploration of resonances by analytic continuation in the coupling constant. Phys. Rev. C 56, 562 (1997)

    Article  ADS  Google Scholar 

  42. B.V. Danilin, T. Rogde, S.N. Ershov, H. Heiberg-Andersen, J.S. Vaagen, I.J. Thompson, M.V. Zhukov, New modes of halo excitation in the \( ^{6} \)He nucleus. Phys. Rev. C 55, R577 (1997)

    Article  ADS  Google Scholar 

  43. V. Vasilevsky, A.V. Nesterov, F. Arickx, J. Broeckhove, Algebraic model for scattering in three-s-cluster systems. II. Resonances in the three-cluster continuum of \( ^{6} \)He and \( ^{6} \)Be. Phys. Rev. C 63, 034607 (2001)

    Article  ADS  Google Scholar 

  44. K. Ogata, T. Myo, T. Furumoto, T. Matsumoto, M. Yahiro, Interplay between the \( 0^{+}_{2} \) resonance and the nonresonant continuum of the drip-line two-neutron halo nucleus \( ^{22} \)C. Phys. Rev. C. 88, 024616 (2013)

    Article  ADS  Google Scholar 

  45. M. Hasan, T. Surungan, Md.A. Khan, Construction of a one-parameter family of isospectral potential to study resonances in weakly bound halo nuclei. J. Phys. Conf. Ser. 1354, 012003 (2019)

    Article  Google Scholar 

  46. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A. Khare, U. Sukhatme, Phase-equivalent potentials obtained from supersymmetry. J. Phys. A Math. Gen. 22, 2847 (1989)

    Article  ADS  Google Scholar 

  48. M.M. Nieto, Relationship between supersymmetry and the inverse method in quantum mechanics. Phys. Lett. B 145, 208 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  49. B.R. Johnson, The renormalized Numerov method applied to calculating bound states of the coupled channel Schröedinger equation. J. Chem. Phys. 69, 4678 (1978)

    Article  ADS  Google Scholar 

  50. G. Darboux, On a proposition relative to linear equations. C. R. Acad. Sci. Paris 94, 1456 (1882)

    MATH  Google Scholar 

  51. J. Pappademos, U. Sukhatme, A. Pagnamenta, Bound states in the continuum from supersymmetric quantum mechanics. Phys. Rev. A 48, 3525 (1993)

    Article  ADS  Google Scholar 

  52. M. A. Preston and R. K. Bhaduri, Structure of the Nucleus, Westview Press (1975) p-509 (Chapter-11); p-660 (Appendix D)

  53. A.J. Toubiana, L.F. Canto, M.S. Hussein, Approximate transmission coefficients in heavy ion fusion. Braz. J. Phys. 47, 321 (2017)

    Article  ADS  Google Scholar 

  54. L. Gan et al., Parametrization of woods-saxon potential for heavy-ion systems. Sci. China-Phys. Mech. Astron. 60, 082013 (2017)

    Article  ADS  Google Scholar 

  55. J. Dudek, Z. Szymanski, T. Werner, Woods-Saxon potential parameters optimized to the high spin spectra in the lead region. Phys. Rev. C 23, 920 (1981)

    Article  ADS  Google Scholar 

  56. T.K. Das, B. Chakrabarti, Calculation of resonances using isospectral potentials. Phys. Letts. A 288, 4 (2001)

    Article  ADS  MATH  Google Scholar 

  57. S.K. Dutta, T.K. Das, M.A. Khan, B. Chakrabarti, Computation of 2\( ^{+} \) resonance in \( ^{6} \)He: bound state in the continuum. J. Phys. G Nucl. Part. Phys. 29, 2411 (2003)

    Article  ADS  Google Scholar 

  58. S.K. Dutta, T.K. Das, M.A. Khan, B. Chakrabarti, Calculation of resonances in weakly bound systems. Int. J. Mod. Phys. E. 13, 811 (2004)

    Article  ADS  Google Scholar 

  59. S. Mahapatra, Low-lying resonance State of \(^{15}\)C: application of supersymmetric quantum mechanics. Few-Body Syst. 52, 1 (2012)

    Article  ADS  Google Scholar 

  60. S.K. Dutta, D. Gupta, D. Das, S.K. Saha, Study of resonance states of \(^{11}\)Be with isospectral bound state microscopic potential. J. Phys. G: Nucl. Part. Phys. 41, 095104 (2014)

    Article  ADS  Google Scholar 

  61. S.K. Dutta, D. Gupta, S.K. Saha, Resonance state wave functions of \(^{15}\)Be using supersymmetric quantum mechanics. Phys. Lett. B 776, 464 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  62. G. Audi, A.H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation:(II). Tables, graphs, and references. Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  63. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, The Ame 2012 atomic mass evaluation. Chinese Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  64. J.W. Hwang et al., Single-neutron knockout from \( ^{20} \)C and the structure of \( ^{19} \)C. Phys. Lett. B 769, 503 (2017)

    Article  ADS  Google Scholar 

  65. A.R. Ridha, Z.M. Abbas, Study of matter density distributions, elastic charge form factors, and size radii for halo \(^{11}\)Be, \(^{19}\)C and \(^{11}\)Li nuclei. Iraqi J. Phys. 16, 29 (2018)

    Article  Google Scholar 

  66. R. Kanungo et al., Proton distribution radii of \( ^{12-19}\)C illuminate features of neutron halos. Phys. Rev. Lett. 117, 102501 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by a computational facility at Aliah University, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. A. Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Hasan, M., Mondal, S.H. et al. Application of Supersymmetric Quantum Mechanics to Calculate Resonance Energy and Wave Function of \(^{19}\)C Halo Nucleus. Few-Body Syst 62, 54 (2021). https://doi.org/10.1007/s00601-021-01640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01640-1

Navigation