Skip to main content
Log in

Generalized Bregman Envelopes and Proximity Operators

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Every maximally monotone operator can be associated with a family of convex functions, called the Fitzpatrick family or family of representative functions. Surprisingly, in 2017, Burachik and Martínez-Legaz showed that the well-known Bregman distance is a particular case of a general family of distances, each one induced by a specific maximally monotone operator and a specific choice of one of its representative functions. For the family of generalized Bregman distances, sufficient conditions for convexity, coercivity, and supercoercivity have recently been furnished. Motivated by these advances, we introduce in the present paper the generalized left and right envelopes and proximity operators, and we provide asymptotic results for parameters. Certain results extend readily from the more specific Bregman context, while others only extend for certain generalized cases. To illustrate, we construct examples from the Bregman generalizing case, together with the natural “extreme” cases that highlight the importance of which generalized Bregman distance is chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In [7], the authors assume joint convexity and coercivity of \({\mathcal {D}}_f\) to obtain non-emptiness of the right proximity operator images by [6, Proposition 3.5]; the latter result relies on the lower semicontinuity of the right distance as shown in [6, Lemma 2.6]. Thus, our rather weak assumption that the right distance be lower semicontinuous is much less restrictive than the assumptions in [7].

References

  1. Attouch, H.: Convergence de fonctions convexes, des sous-différentiels et semi-groupes associés. Comptes Rendus de l’Académie des Sciences de Paris 284, 539–542 (1977)

    MathSciNet  MATH  Google Scholar 

  2. Attouch, H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)

    MATH  Google Scholar 

  3. Attouch, H., Wets, R.J.-B.: Approximation and convergence in nonlinear optimization. In: Mangasarian, O., Meyer, R., Robinson, S. (eds.) Nonlinear Programming, vol. 4, pp. 367–394. Academic Press, New York (1983)

    Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4(1), 27–67 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Cham (2017)

    Book  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L., Noll, D.: Joint minimization with alternating Bregman proximity operators. Pac. J. Optim. 2(3), 401–424 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Dao, M.N., Lindstrom, S.B.: Regularizing with Bregman-Moreau envelopes. SIAM J. Optim. 28(4), 3208–3228 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bauschke, H.H., Lindstrom, S.B.: Proximal averages for minimization of entropy functionals. Pure Appl. Funct. Anal. 5(3), 505–531 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., McLaren, D.A., Sendov, H.S.: Fitzpatrick functions: inequalities, examples, and remarks on a problem by S. Fitzpatrick. J. Convex Anal. 13(3–4), 499–523 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Borwein, J.M., Lindstrom, S.B.: Meetings with Lambert W and other special functions in optimization and analysis. Pure Appl. Funct. Anal. 1(3), 361–396 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  Google Scholar 

  12. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  13. Burachik, R.S., Dao, M.N., Lindstrom, S.B.: The generalized Bregman distance. SIAM J. Optim. 31(1), 404–424 (2021)

    Article  MathSciNet  Google Scholar 

  14. Burachik, R.S., Dutta, J.: Inexact proximal point methods for variational inequality problems. SIAM J. Optim. 20(5), 2653–2678 (2010)

    Article  MathSciNet  Google Scholar 

  15. Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8(1), 197–216 (1998)

    Article  MathSciNet  Google Scholar 

  16. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, New York (2008)

    MATH  Google Scholar 

  17. Burachik, R., Kassay, G.: On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Anal. 75(18), 6456–6464 (2012)

    Article  MathSciNet  Google Scholar 

  18. Burachik, R.S., Martínez-Legaz, J.E.: On Bregman-type distances for convex functions and maximally monotone operators. Set Valued Var. Anal. 26(2), 369–384 (2018)

    Article  MathSciNet  Google Scholar 

  19. Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set Valued Anal. 10(4), 297–316 (2002)

    Article  MathSciNet  Google Scholar 

  20. Byrne, C., Censor, Y.: Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback–Leibler distance minimization. Ann. Oper. Res. 105(1–4), 77–98 (2001)

    Article  MathSciNet  Google Scholar 

  21. Censor, Y., Zenios, S.A.: Proximal minimization algorithm with D-functions. J. Optim. Theory Appl. 73(3), 451–464 (1992)

    Article  MathSciNet  Google Scholar 

  22. Chao, H., Vandenberghe, L.: Entropic proximal operators for nonnegative trigonometric polynomials. IEEE Trans. Signal Process. 66(18), 4826–4838 (2018)

    Article  MathSciNet  Google Scholar 

  23. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3(3), 538–543 (1993)

    Article  MathSciNet  Google Scholar 

  24. Chrétien, S., Guyeux, C., Conesa, B., Delage-Mouroux, R., Jouvenot, M., Huetz, P., Descôtes, F.: A Bregman-proximal point algorithm for robust non-negative matrix factorization with possible missing values and outliers - application to gene expression analysis. BMC Bioinform. 17(8), 623–631 (2016)

    Google Scholar 

  25. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  Google Scholar 

  26. Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)

    Book  Google Scholar 

  27. Djafari Rouhani, B., Mohebbi, V.: Proximal point method for quasi-equilibrium problems in Banach spaces. Numer. Funct. Anal. Optim. 41(9), 1007–1026 (2020)

    Article  MathSciNet  Google Scholar 

  28. Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Math. Oper. Res. 18(1), 202–226 (1993)

    Article  MathSciNet  Google Scholar 

  29. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Proceedings of The Centre for Mathematical Analysis, Australian National University, vol. 20, pp. 59–65 (1988)

  30. Hiriart-Urruty, J.-B.: Conditions for global optimality. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 1–26. Springer, Boston (1995)

    MATH  Google Scholar 

  31. Jiang, X., Vandenberghe, L.: Bregman primal-dual first-order method and application to sparse semidefinite programming, (2020). Available at https://www.optimization-online.org/DB_HTML/2020/03/7702.html

  32. Kiwiel, K.C.: Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35(4), 1142–1168 (1997)

    Article  MathSciNet  Google Scholar 

  33. Moreau, J.-J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. Comptes Rendus de l’Académie des Sciences 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  34. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  35. Schirotzek, W.: Nonsmooth Analysis. Springer, Berlin (2007)

    Book  Google Scholar 

  36. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two anonymous referees for their careful comments and suggestions. Part of this work was done during MND’s visit to the University of South Australia in 2018 to whom he acknowledges the hospitality. SBL was supported by an Australian Mathematical Society Lift-Off Fellowship and by Hong Kong Research Grants Council PolyU153085/16p.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh N. Dao.

Additional information

Communicated by Juan-Enrique Martínez-Legaz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix: Closed Forms for Envelopes and Proximity Operators

A Appendix: Closed Forms for Envelopes and Proximity Operators

For all our examples, we use the closed distances as described in Remark 2.4. The function denoted \({\mathcal {W}}\) is the principal branch of the Lambert \({\mathcal {W}}\) function, whose occurrences in variational analysis have been discussed in, for example, [8, 10, 25].

Example A.1

(Left prox and envelope for \(\overline{{\mathcal {D}}}^{F_{\log }}\))

Beginning with the smallest member of \({\mathcal {H}}(\log )\), we first consider the left envelope and corresponding proximity operator characterized by

$$\begin{aligned} \,\overleftarrow{{\text {env}}}_{\gamma ,\theta }^{\dagger F_{\log }}(x)&= \underset{y \in {\mathbb {R}}_+}{\inf } \{\theta (y)+\frac{1}{\gamma }\overline{{\mathcal {D}}}^{F_{\log }}(y,x) \}\\&=\theta (\overleftarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger F_{\log }} (x))+\frac{1}{\gamma }\overline{{\mathcal {D}}}^{F_{\log }}\left( \overleftarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger F_{\log }} (x),x \right) , \end{aligned}$$

where \(F_{\log }\) is given in [9, Example 3.6] and \(\overline{{\mathcal {D}}^{F_{\log }}}\) is in (39). We have that

$$\begin{aligned} \overleftarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger F_{\log }}(x)&= {\left\{ \begin{array}{ll} \left( \frac{1}{\gamma }+1\right) e^{\gamma }\gamma x &{} \text {if } x\le \frac{e^{-\gamma }}{2+2\gamma };\\ \left( \frac{1}{\gamma }-1\right) e^{-\gamma }\gamma x &{} \text {if } \frac{e^\gamma }{2-2\gamma } < x;\\ \frac{1}{2} &{} \text {otherwise}, \end{array}\right. }\\ \text {and}\quad \,\overleftarrow{{\text {env}}}_{\gamma ,\theta }^{\dagger F_{\log }}(x)&={\left\{ \begin{array}{ll} \frac{1}{2}-e^{\gamma }x &{} \text {if } x\le \frac{e^{-\gamma }}{2+\gamma };\\ \gamma \left( \left( \frac{1}{\gamma }-1 \right) e^{-\gamma }x +e^\gamma x \right) -\frac{1}{2} &{} \text {if } x> \frac{e^\gamma }{2-\gamma };\\ \frac{\left( {\mathcal {W}}\left( \frac{e}{2x} \right) -1 \right) ^2}{2\gamma {\mathcal {W}}\left( \frac{e}{2x} \right) } &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

The envelope is shown in Fig. 2a.

Example A.2

(Right prox and envelope for \(\overline{{\mathcal {D}}}^{F_{\log }}\))

We next consider the right envelope and corresponding proximity operator characterized by

$$\begin{aligned} \,\overrightarrow{{\text {env}}}_{\gamma ,\theta }^{\dagger F_{\log }}(x)&= \underset{y \in {\mathbb {R}}_+}{\inf } \{\theta (y)+\frac{1}{\gamma }\overline{{\mathcal {D}}}^{F_{\log }}(x,y) \}\\&=\theta (\overrightarrow{{\text {s}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger F_{\log }} (x))+\frac{1}{\gamma }\overline{{\mathcal {D}}}^{F_{\log }}\left( x,\overrightarrow{{\text {s}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger F_{\log }} (x)\right) ,\\ \text {where}\quad \overrightarrow{{\text {s}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger F_{\log }} (x)&\in \overrightarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger F_{\log }} (x). \end{aligned}$$

We use the selection operator \(\overrightarrow{{\text {s}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{F_{\log }}\) because, in this case, the prox operator \(\overrightarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{F_{\log }}\) is set-valued:

The corresponding right envelope is

$$\begin{aligned} \,\overrightarrow{{\text {env}}}_{\gamma ,\theta }^{\dagger F_{\log }}(x)=&{\left\{ \begin{array}{ll} \frac{1}{2} &{} \text {if } x=0 \,\text {and}\, e \le \frac{1}{\gamma };\\ \frac{1}{2\gamma e} &{} \text {if } x=0 \,\text {and}\, \frac{1}{\gamma }< e;\\ \frac{x{\mathcal {W}}(\gamma )}{\gamma ({\mathcal {W}}(\gamma )+1)}-\frac{1}{2}\\ +\frac{x \left( {\mathcal {W}}\left( \frac{e\gamma ({\mathcal {W}}(\gamma )+1)}{{\mathcal {W}}(\gamma )} \right) -1 \right) ^2}{\gamma {\mathcal {W}}\left( \frac{e\gamma ({\mathcal {W}}(\gamma )+1)}{{\mathcal {W}}(\gamma )} \right) } &{} \text {if } \frac{\gamma ({\mathcal {W}}(\gamma )+1)}{2{\mathcal {W}}(\gamma )}<x;\\ \frac{x{\mathcal {W}}(-\gamma )}{\gamma ({\mathcal {W}}(-\gamma )+1)}+\frac{1}{2}\\ +\frac{x \left( {\mathcal {W}}\left( - \frac{e\gamma ({\mathcal {W}}(-\gamma )+1)}{{\mathcal {W}}(-\gamma )} \right) -1 \right) ^2}{\gamma {\mathcal {W}}\left( - \frac{e\gamma ({\mathcal {W}}(-\gamma )+1)}{{\mathcal {W}}(-\gamma )} \right) } &{} \text {if } 0<x<-\frac{\gamma ({\mathcal {W}}(-\gamma )+1)}{2{\mathcal {W}}(-\gamma )} \,\text {and}\, e<\frac{1}{\gamma };\\ \frac{x({\mathcal {W}}(2xe)-1)^2}{\gamma {\mathcal {W}}(2xe)} &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

The envelope is shown in Fig. 3a.

Example A.3

(Left prox and envelope for \(\overline{{\mathcal {D}}}^{\sigma _{\log }}\))

Turning to the biggest of the representative functions for the logarithm, we next consider the left envelope and corresponding proximity operator characterized by

$$\begin{aligned} \,\overleftarrow{{\text {env}}}_{\gamma ,\theta }^{\dagger \sigma _{\log }}(x)&= \underset{y \in {\mathbb {R}}_+}{\inf } \{\theta (y)+\frac{1}{\gamma }\overline{{\mathcal {D}}}^{\sigma _{\log }}(y,x) \}\\&=\theta (\overleftarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger \sigma _{\log }} (x))+\frac{1}{\gamma }\overline{{\mathcal {D}}}^{\sigma _{\log }}(\overleftarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger \sigma _{\log }} (x),x). \end{aligned}$$

where \(\overline{{\mathcal {D}}^{\sigma _{\log }}}\) is as in 41. We have that

$$\begin{aligned} \overleftarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger \sigma _{\log }} (x)= {\left\{ \begin{array}{ll} \frac{x}{e^{-\gamma +1}} &{} \text {if } x \le \frac{1}{2}e^{-\gamma +1} \,\text {and}\, 1\le \gamma ;\\ x &{} \text {if } x \ge \frac{1}{2} \text {or} \gamma <1;\\ \frac{1}{2} &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

The corresponding envelope is

$$\begin{aligned} \,\overleftarrow{{\text {env}}}_{\gamma ,\theta }^{\sigma _{\log }}(x) = {\left\{ \begin{array}{ll} 0 &{} \text {if } x=0;\\ x-\frac{1}{2} &{} \text {if } x \ge \frac{1}{2};\\ \frac{1}{2} -x &{} \text {if } x< \frac{1}{2} \,\text {and}\, \gamma < 1;\\ -\frac{x}{\gamma }e^{\gamma -1}\left( -\log \left( xe^{\gamma -1} \right) +\gamma +\log (x) \right) \\ +\frac{1}{2} &{} \text {if } x \le \frac{1}{2} e^{-\gamma +1} \,\text {and}\, 1 \le \gamma ;\\ -\frac{1}{2\gamma }\log (2x) &{} \text {otherwise}. \end{array}\right. }. \end{aligned}$$

The envelope is shown in Fig. 2c.

Example A.4

(Right prox and envelope for \(\overline{{\mathcal {D}}}^{\sigma _{\log }}\)) We consider the right envelope and corresponding proximity operator characterized by

$$\begin{aligned} \,\overrightarrow{{\text {env}}}_{\gamma , \theta }^{\dagger \sigma _{\log }}(x)&= \underset{y \in {\mathbb {R}}_+}{\inf } \{\theta (y)+\frac{1}{\gamma }\overline{{\mathcal {D}}}^{\sigma _{\log }}(x,y) \}\\&=\theta (\overrightarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger \sigma _{\log }} (x))+\frac{1}{\gamma }\overline{{\mathcal {D}}}^{\sigma _{\log }}\left( x,\overrightarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger \sigma _{\log }} (x)\right) . \end{aligned}$$

The corresponding proximity operator is

$$\begin{aligned} \overrightarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger \sigma _{\log }} (x)={\left\{ \begin{array}{ll} \frac{1}{2} &{} \text {if } \frac{1}{2}< x \,\text {and}\, x\le \frac{1}{2}\gamma ;\\ \frac{x}{\gamma } &{} \text {if } 1 \le \gamma \,\text {and}\, \frac{1}{2} \gamma < x ;\\ x &{}\text {otherwise}, \end{array}\right. } \end{aligned}$$

while the corresponding envelope is

$$\begin{aligned} \,\overrightarrow{{\text {env}}}_{\gamma , \theta }^{\dagger \sigma _{\log }}(x) = {\left\{ \begin{array}{ll} \frac{1}{2}-x &{} \text {if } x \le \frac{1}{2};\\ x-\frac{1}{2} &{} \text {if } \frac{1}{2}< x \,\text {and}\, \gamma \le 1;\\ -\frac{1}{2}+\frac{x}{\gamma }(1+\log (\gamma )) &{} \text {if } 1\le \gamma \,\text {and}\, \frac{\gamma }{2} < x ;\\ \frac{x}{\gamma }\log (2x) &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

The envelope is shown in Fig. 3c.

The operators in Example A.5 (and their computation) may be found in [7], with the minor modification that here we are computing with the lower closure of the distance and so obtain closed forms which differ at zero. We include them here for their comparison with the new GBDs for the logarithm.

Example A.5

(Proxes and envelopes for \(\overline{{\mathcal {D}}}^{{\text {ent}}\oplus {\text {ent}}^*}\)) We next consider the case when \(\overline{{\mathcal {D}}}^{{\text {ent}}\oplus {\text {ent}}^*}\) is the closed GBD for the Fenchel–Young representative of \(\log \) (37), a case whose relationship to the Bregman distance for the Boltzmann–Shannon entropy is discussed in Example 2.2. The left proximity operator and envelope are given by

$$\begin{aligned} \overleftarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger {\text {ent}}\oplus {\text {ent}}^*}(y)&={\left\{ \begin{array}{ll} y\exp (\gamma ), &{}\text { if } 0 \le y<\tfrac{1}{2}\exp (-\gamma ); \\ y\exp (-\gamma ), &{}\text { if } y >\tfrac{1}{2}\exp (\gamma ); \\ \tfrac{1}{2}, &{}\text { otherwise}, \end{array}\right. }\\ \,\overleftarrow{{\text {env}}}_{\gamma ,\theta }^{\dagger {\text {ent}}\oplus {\text {ent}}^*}(y)&={\left\{ \begin{array}{ll} \tfrac{y(1-e^\gamma )}{\gamma } + \tfrac{1}{2}, &{}\text { if } 0 \le y<\tfrac{1}{2}\exp (-\gamma ); \\ \tfrac{y(1-e^{-\gamma })}{\gamma } - \tfrac{1}{2}, &{}\text { if } \tfrac{1}{2}\exp (\gamma ) <y; \\ \tfrac{2y- \ln (y) -1 -\ln (2)}{2\gamma }, &{}\text { otherwise}. \end{array}\right. } \end{aligned}$$

For details, see [7, Example 4.1(ii)]. The envelope is shown in Fig. 2b. The right proximity operator and envelope are given by

$$\begin{aligned} \overrightarrow{{\text {P}}}_ {\negthinspace \negthinspace \gamma ,\theta }^{\dagger {\text {ent}}\oplus {\text {ent}}^*}(x)&={\left\{ \begin{array}{ll} \tfrac{x}{1 -\gamma }, &{}\text { if } 0 \le x<\tfrac{1 -\gamma }{2}; \\ \tfrac{x}{1 +\gamma }, &{}\text { if } x>\tfrac{1 +\gamma }{2}; \\ \tfrac{1}{2}, &{}\text { otherwise}. \end{array}\right. }\\ \,\overrightarrow{{\text {env}}}_{\gamma , \theta }^{\dagger {\text {ent}}\oplus {\text {ent}}^*}(x)&={\left\{ \begin{array}{ll} \tfrac{\ln (1 -\gamma )}{\gamma }x + \tfrac{1}{2}, &{}\text { if } 0 \le x <\tfrac{1 -\gamma }{2}; \\ \tfrac{\ln (1 +\gamma )}{\gamma }x - \tfrac{1}{2}, &{}\text { if } x >\tfrac{1 +\gamma }{2}; \\ \tfrac{1}{\gamma }\left( x\ln (2x) -x +\tfrac{1}{2}\right) , &{}\text { otherwise}. \end{array}\right. } \end{aligned}$$

For details, see [7, Example 4.1(ii)]. The envelope is shown in Fig. 3b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burachik, R.S., Dao, M.N. & Lindstrom, S.B. Generalized Bregman Envelopes and Proximity Operators. J Optim Theory Appl 190, 744–778 (2021). https://doi.org/10.1007/s10957-021-01895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01895-y

Keywords

Mathematics Subject Classification

Navigation