Skip to main content
Log in

Six-Port Quarter Wavelength Slotted MIMO Antenna for 5G Mobile Phone

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, six-port Multi-Band MIMO antenna is presented for 5G mobile phone applications. The proposed antenna array is designed by making six open-ended slots in the ground plane which is printed on the backside of 0.8 mm thick FR4 substrate. The proposed antenna operates in the frequency band 3.33 GHz–3.63 GHz (covers LTE band 42) with − 10 dB impedance bandwidth of 300 MHz. Nevertheless, for 3:1 VSWR (− 6 dB impedance bandwidth), the total bandwidth is 500 MHz from 3.3 to 3.8 GHz (includes LTE bands 43, 48, 49 and 52). The prototype of the six-element antenna array is fabricated and measured. The measured isolation is better than 16 dB without employing any decoupling techniques, making the antenna highly equipped for 5G mobile applications. MIMO parameters like Envelope Correlation Coefficient, and Peak Channel Capacity are measured. The robustness of the six-port MIMO antenna system is validated by estimating the user's hand effects and Specific Absorption Rate. Better agreement between the simulated and measured results exhibit, the proposed antenna is a promising candidate for future cellular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xu, Su., Zhang, M., Wen, H., et al. (2017). Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium. Science and Reports, 7(12162), 1–9.

    Google Scholar 

  2. Zhao, A., & Zhouyou, R. (2019). Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Antennas Wireless Propagation Letters, 18, 152–156.

    Article  Google Scholar 

  3. Sun, L., Feng, H., Li, Y., et al. (2018). Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs. IEEE Transactions on Antenna and Propagation, 66(11), 6364–6369.

    Article  Google Scholar 

  4. Li, M.-Y. (2017). Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. IET Microwaves and Antennas Propagation, 11(12), 1810–1816.

    Article  Google Scholar 

  5. Parchin, N. O., Al-Yasir, Y. I. A., Ali, A. H., et al. (2019). Eight-element dual polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access, 9, 15612–15622.

    Article  Google Scholar 

  6. Li, M.-Y., Ban, Y.-L., Xu, Z.-Q., et al. (2018). Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6, 6160–6170.

    Article  Google Scholar 

  7. Abdullah, M., Ban, Y.-L., Kang, K., et al. (2017). Eight-element antenna array at 3.5 GHz for MIMO wireless application. Progress in Electromagnetic Research C, 78, 209–217.

    Article  Google Scholar 

  8. Zhao, X., Yeo, S. P., & Ong, L. C. (2018). Decoupling of inverted-F antennas with high order modes of ground plane for 5G mobile MIMO platform. IEEE Transactions on Antenna and Propagation, 66(9), 4485–4495.

    Article  Google Scholar 

  9. Wong, K.-L., Lu, J.-Y., Chen, L.-Y., et al. (2016). 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microwave and Optical Technology Letters, 58(1), 174–181.

    Article  Google Scholar 

  10. Parchin, N. O., Al-Yasir, Y. I. A., Noras, J. M., et al. (EuCAP 2019). Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications. In 13th European Conference on Antennas and Propagation, (p. 1–4). Krakow, Poland.

  11. Li, M.-Y., Ban, Y.-L., Xu, Z.-Q., et al. (2016). Eight-port orthogonally dual polarized antenna array for 5G smartphone applications. IEEE Transactions on Antennas and Propagation, 64(9), 3820–3830.

    Article  MathSciNet  Google Scholar 

  12. Wong, K. L., Lu, J. Y., Chen, L. Y., et al. (2015). 16-antenna array in the smartphone for the 3.5-GHz MIMO operation. In Asia Pacific Microwave conference, (p. 1–3).

  13. Wong, K. L., Lu, J. Y., Chen, L. Y., et al. (2016). 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microwave and optical technology Letters, 58(1), 174–181.

    Article  Google Scholar 

  14. Lu, J. Y., Wong, K. L., Li, W. Y. (2016). Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8×8 MIMO operation. In Proceedings of IEEE 5th Asia-Pacific Conf on Antennas and Propagation, (p. 323–324).

  15. Jiang, W., Liu, B., Cui, Y. Q., et al. (2019). High-isolation eight element MIMO array for 5G smartphone applications. IEEE Access, 7, 34104–34112.

    Article  Google Scholar 

  16. Jiang, W., Cui, Y. Q., Liu, B., et al. (2019). A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications. IEEE Access, 7, 112554–112563.

    Article  Google Scholar 

  17. Xu, H., Zhou, H., Gao, S., et al. (2017). Multimode de coupling technique with independent tuning characteristic for mobile terminals. IEEE Transactions on Antennas and Propagation, 65(12), 6739–6751.

    Article  Google Scholar 

  18. Li, M. Y., Ban, Y. L., Xu, Z. Q., et al. (2016). Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Transactions on Antenna and Propagation, 64(9), 3820–3830.

    Article  MathSciNet  Google Scholar 

  19. Li, M. Y., Xu, Z. Q., Ban, Y. L., et al. (2017). Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. IET Microwaves & Antennas Propagation, 11(12), 1810–1816.

    Article  Google Scholar 

  20. Li, M. Y., Ban, Y. L., Xu, Z. Q., et al. (2018). Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6, 6160–6170.

    Article  Google Scholar 

  21. Li, Y. X., Sim, C. Y. D., Luo, Y., et al. (2018). Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphone. IEEE Access, 6, 28041–28053.

    Article  Google Scholar 

  22. Liu, Y., Ren, A. D., Liu, H., et al. (2019). Eight-port MIMO array using characteristic mode theory for 5G smartphone applications. IEEE Access, 7, 45679–45692.

    Article  Google Scholar 

  23. Sun, L. B., Feng, H. G., & Li, Y. (2018). Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal. Microwave and optical technology Letters, 60(7), 1751–1756.

    Article  Google Scholar 

  24. Sun, L. B., Feng, H. G., Li, Y., et al. (2018). Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal mode pairs. IEEE Transactions on Antenna and Propagation, 66(11), 6364–6369.

    Article  Google Scholar 

  25. Ren, A. D., Liu, Y., & Sim, C. Y. D. (2019). A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone. IEEE Transactions on Antenna and Propagation, 67(10), 6430–6438.

    Article  Google Scholar 

  26. Wong, K. L., Tsai, C. Y., & Lu, J. Y. (2017). Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Transactions on Antenna and Propagation, 65(4), 1765–1778.

    Article  MathSciNet  Google Scholar 

  27. Wong, K. L., Chen, Y. H., & Li, W. Y. (2018). Decoupled compact ultra-wideband MIMO antennas covering 3300–6000 MHz for the fifth-generation mobile and 5 GHz WLAN operations in the future smartphone. Microwave and Optical Technology Letters, 60(10), 2345–2351.

    Google Scholar 

  28. Wong, K. L., Lin, B. W., & Lin, S. E. (2019). High-isolation conjoined loop multi-input multi-output antennas for the fifth-generation tablet device. Microwave and Optical Technology Letters, 61(1), 111–119.

    Article  Google Scholar 

  29. Zhang, X. G., Li, Y. X., Wang, W., et al. (2019). Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smart phones. IEEE Access, 7, 72273–72282.

    Article  Google Scholar 

  30. Lu, J. Y., Chang, H. J., Wong, K. L. 10-antenna array in the smartphone for the 3.6-GHz MIMO operation. In Proc IEEE Int Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015, (p. 1220–1221).

  31. Wong, K. L., Chang, H. J., & Li, W. Y. (2018). Integrated triple wide band triple-inverted-F antenna covering 617–960/ 1710–2690/3300–4200 MHz for 4G/5G communications in the smart phone. Microwave and Optical Technology Letters, 60(9), 2091–2096.

    Article  Google Scholar 

  32. Huang, C., Jiao, Y. C., & Weng, Z. B. (2018). Novel compact CRLHTL-based tri-band MIMO antenna element for the 5G mobile handsets. Microwave and Optical Technology Letters, 60(10), 2559–2564.

    Google Scholar 

  33. Chen, Q. G., Lin, H. W., Wang, J. P., et al. (2019). Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Transactions on Antenna and Propagation, 67(3), 1476–1487.

    Article  Google Scholar 

  34. Deng, C. J., Liu, D., & Lv, X. (2019). Tightly-arranged four-element MIMO antennas for 5G mobile terminals. IEEE Transactions on Antenna and Propagation, 7(10), 6353–6361.

    Article  Google Scholar 

  35. Li, Y. X., Sim, C. Y. D., Luo, Y., et al. (2019). High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smart phones. IEEE Transactions on Antenna and Propagation, 67(6), 3820–3830.

    Article  Google Scholar 

  36. Certification C. (2011). Test Plan for mobile station over the air performance, Method of Measurement for radiated Power receiver performance, revision 3.1 January 2011.

  37. Fallah, M., Heydari, A. A., Mallahzadeh, A. R., & Kashani, F. H. (2011). Design and SAR reduction of the vest antenna using metamaterial for broadband applications. Applied Computational Electromagnetics Society Journal, 26, 141–155.

    Google Scholar 

  38. Ban, Y. L., Li, C., Sim, C. Y. D., et al. (2016). 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access, 4, 2981–2988.

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank RF Centre of Excellence SASTRA-Keysight at SASTRA for their technical support in fabrication and measuring the antenna parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Venkat Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D.R., Babu, G.V. Six-Port Quarter Wavelength Slotted MIMO Antenna for 5G Mobile Phone. Wireless Pers Commun 120, 2043–2059 (2021). https://doi.org/10.1007/s11277-021-08733-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08733-4

Keywords

Navigation