Skip to main content

Advertisement

Log in

EVBlocks: A Blockchain-Based Secure Energy Trading Scheme for Electric Vehicles underlying 5G-V2X Ecosystems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the authors propose a secure and trusted energy trading (ET) scheme for electric vehicles (EVs) for vehicle-to-anything (V2X) ecosystems. The scheme, named as EVBlocks, facilitates ET among entities (i.e., EVs, charging stations (CS), and smart grids (SG)) in a secured and trusted manner through a consortium blockchain (CBC) network. The scheme operates in three phases. In the first phase, to allow real-time and resilient network orchestration of V2X nodes, we consider the ET service designed over a fifth-generation (5G) enabled software-defined networking (SDN) environment. Integration of SDN in 5G-V2X ecosystems allows V2X nodes to eliminate intermediaries and handle many requests with a minimum response time. Then, in the second phase, a non-cooperative game is presented that optimizes a cost function and converges to reach at least one Nash equilibrium point. Finally, a consensus algorithm Proof-of-Greed (PoG) is proposed that handles fluctuations in charging/discharging EVs through an event-driven scheduling mechanism. The obtained results are compared against parameters, such as ET time, State-of-Charge (SoC) levels, EV utility, block-convergence time, profits, computation, and communication costs. For example, EVBlocks achieve an average SOC charge of 22.8MW, with a peak at 377.5MW, the average power dissipation of 4.1125 kWH that is lower than \(25\%\) against existing conventional and fixed tariff schemes. The scheme converges at stable profit values for 5 EVs through a non-cooperative game. For proposed PoG consensus, the block convergence time for 1000 nodes is 138.96 seconds, at a computation cost of 46.92 milliseconds (ms) and communication cost of 149 bytes. The comparative analysis suggests the proposed scheme is efficient as compared to existing state-of-the-art approaches against compared parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Coco framework whitepaper. https://github.com/Azure/coco-framework. Accessed: (2021)-04-21.

  2. Abdella, J., Tari, Z., Anwar, A., Mahmood, A., & Han, F. (2021). An architecture and performance evaluation of blockchain-based peer-to-peer energy trading. IEEE Transactions on Smart Grid pp. 1. https://doi.org/10.1109/TSG.2021.3056147.

  3. Almakhour, M., Sliman, L., Samhat, A. E., & Mellouk, A. (2020). Verification of smart contracts: A survey. Pervasive and Mobile Computing, 67, 101227. https://doi.org/10.1016/j.pmcj.2020.101227.

    Article  Google Scholar 

  4. Anand, A., de Veciana, G., & Shakkottai, S. (2020). Joint scheduling of urllc and embb traffic in 5g wireless networks. IEEE/ACM Transactions on Networking, 28(2), 477–490. https://doi.org/10.1109/TNET.2020.2968373.

    Article  Google Scholar 

  5. Aujla, G. S., Kumar, N., Singh, M., & Zomaya, A. Y. (2019). Energy trading with dynamic pricing for electric vehicles in a smart city environment. Journal of Parallel and Distributed Computing, 127, 169–183.

    Article  Google Scholar 

  6. Batamuliza, J., & Hanyurwimfura, D. (2020). A secure and efficient anonymous certificateless signcryption for key distribution scheme for smart grid. In: 2020 21st International Arab Conference on Information Technology (ACIT), pp. 1–7 . https://doi.org/10.1109/ACIT50332.2020.9300057.

  7. Bhatia, J., Modi, Y., Tanwar, S., & Bhavsar, M. (2019). Software defined vehicular networks: A comprehensive review. International Journal of Communication Systems, 32(12), e4005.

    Article  Google Scholar 

  8. Bhattacharya, P., Tanwar, S., Bodke, U., Tyagi, S., & Kumar, N. (2019) Bindaas: Blockchain-based deep-learning as-a-service in healthcare 4.0 applications. IEEE Transactions on Network Science and Engineering pp. 1. https://doi.org/10.1109/TNSE.2019.2961932.

  9. Bhattacharya, P., Tanwar, S., Shah, R., & Ladha, A. (2020). Mobile edge computing-enabled blockchain framework—a survey. In: P.K. Singh, A.K. Kar, Y. Singh, M.H. Kolekar, S. Tanwar (eds.) Proceedings of ICRIC 2019, pp. 797–809. Springer, Cham .

  10. Bodkhe, U., Bhattacharya, P., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M.S. (2019). Blohost: Blockchain enabled smart tourism and hospitality management. In: 2019 International Conference on Computer, Information and Telecommunication Systems, Beijing, China, pp. 237–241. IEEE .

  11. Bürer,  M.J.,  de  Lapparent,  M.,  Pallotta,  V.,  Capezzali,  M.,  Carpita,  M.:  Use  cases  for blockchain  in  the  energy  industry  opportunities  of  emerging  business  models  and  related  risks.   Computers  &  Industrial  Engineering 137,  106002  (2019). https://doi.org/10.1016/j.cie.2019.106002. https://www.sciencedirect.com/science/article/pii/S0360835219304607

  12. Chaudhary, R., Jindal, A., Aujla, G. S., Aggarwal, S., Kumar, N., & Choo, K. K. R. (2019). Best: Blockchain-based secure energy trading in sdn-enabled intelligent transportation system. Computers & Security, 85, 288–299.

    Article  Google Scholar 

  13. Chen, S., Hu, J., Shi, Y., Zhao, L., & Li, W. (2020). A vision of c-v2x: Technologies, field testing, and challenges with chinese development. IEEE Internet of Things Journal, 7(5), 3872–3881. https://doi.org/10.1109/JIOT.2020.2974823.

    Article  Google Scholar 

  14. Deng, R., Yang, Z., Chen, J., Asr, N. R., & Chow, M. Y. (2014). Residential energy consumption scheduling: A coupled-constraint game approach. IEEE Transactions on Smart Grid, 5(3), 1340–1350.

    Article  Google Scholar 

  15. Do, D. T., Nguyen, T. T. T., Le, C. B., & Lee, J. W. (2020). Two-way transmission for low-latency and high-reliability 5g cellular v2x communications. Sensors, 20(2), 386.

    Article  Google Scholar 

  16. Florea, B. C., & Taralunga, D. D. (2020). Blockchain iot for smart electric vehicles battery management. Sustainability. https://doi.org/10.3390/su12103984.

    Article  Google Scholar 

  17. Hathaliya, J. J., Tanwar, S., Tyagi, S., & Kumar, N. (2019). Securing electronics healthcare records in healthcare 4.0 : A biometric-based approach. Computers & Electrical Engineering, 76, 398–410.

    Article  Google Scholar 

  18. Hayes, B., Thakur, S., & Breslin, J. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power & Energy Systems, 115, 1–10. https://doi.org/10.1016/j.ijepes.2019.105419.

    Article  Google Scholar 

  19. Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Communications Surveys Tutorials, 20(2), 870–913. https://doi.org/10.1109/COMST.2017.2783541.

    Article  Google Scholar 

  20. Heydari, S., Fajri, P., Sabzehgar, R., & Asrari, A. (2020). Optimal brake allocation in electric vehicles for maximizing energy harvesting during braking. IEEE Transactions on Energy Conversion, 35(4), 1806–1814. https://doi.org/10.1109/TEC.2020.2994520.

    Article  Google Scholar 

  21. Hua, S., Zhou, E., Pi, B., Sun, J., Nomura, Y., & Kurihara, H. (2018). Apply blockchain technology to electric vehicle battery refueling. In: Proceedings of the 51st Hawaii International Conference on System Sciences.

  22. Jalil Piran, M., Tran, N. H., Suh, D. Y., Song, J. B., Hong, C. S., & Han, Z. (2017). Qoe-driven channel allocation and handoff management for seamless multimedia in cognitive 5g cellular networks. IEEE Transactions on Vehicular Technology, 66(7), 6569–6585. https://doi.org/10.1109/TVT.2016.2629507.

    Article  Google Scholar 

  23. Jamil, F., Iqbal, N., Ahmad, S., & Kim, D. (2021). Peer-to-peer energy trading mechanism based on blockchain and machine learning for sustainable electrical power supply in smart grid. IEEE Access, 9, 39193–39217. https://doi.org/10.1109/ACCESS.2021.3060457.

    Article  Google Scholar 

  24. Jindal, A., Aujla, G. S., & Kumar, N. (2019). Survivor: A blockchain based edge-as-a-service framework for secure energy trading in sdn-enabled vehicle-to-grid environment. Computer Networks, 153, 36–48.

    Article  Google Scholar 

  25. Kabra, N., Bhattacharya, P., Tanwar, S., & Tyagi, S. (2020). Mudrachain: Blockchain-based framework for automated cheque clearance in financial institutions. Future Generation Computer Systems, 120, 574–587.

    Article  Google Scholar 

  26. Khan Tayyaba, S., Khattak, H. A., Almogren, A., Shah, M. A., Ud Din, I., Alkhalifa, I., & Guizani, M. (2020). 5g vehicular network resource management for improving radio access through machine learning. IEEE Access, 8, 6792–6800. https://doi.org/10.1109/ACCESS.2020.2964697.

    Article  Google Scholar 

  27. Kim, Y. M., Jung, D., Chang, Y., & Choi, D. H. (2019). Intelligent micro energy grid in 5g era: Platforms, business cases, testbeds, and next generation applications. Electronics, 8(4), 468.

    Article  Google Scholar 

  28. Kumar, R. (2019). Report of Electric Vehicle Market-Global Opportunity analysis and Industry Forecast, 2018-2025. https://www.alliedmarketresearch.com/electric-vehicle-market (2019). [Online; accessed 26-Aug-2020].

  29. Kumari, A., Gupta, R., Tanwar, S., & Kumar, N. (2020). A taxonomy of blockchain-enabled softwarization for secure uav network. Computer Communications, 161, 304–323. https://doi.org/10.1016/j.comcom.2020.07.042.

    Article  Google Scholar 

  30. Kumari, A., Shukla, A., Gupta, R., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Et-deal: A p2p smart contract-based secure energy trading scheme for smart grid systems. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1051–1056 .

  31. Lee, Z.J., Li, T., & Low, S.H. (2019). Acn-data: Analysis and applications of an open ev charging dataset. In: Proceedings of the Tenth ACM International Conference on Future Energy Systems, e-Energy ’19, p. 139–149. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3307772.3328313.

  32. Liang, Y., & Zhang, X. (2018). Battery swap pricing and charging strategy for electric taxis in china. Energy, 147, 561–577.

    Article  Google Scholar 

  33. Lin, X., Wu, J., Bashir, A. K., Li, J., Yang, W., & Piran, J. (2020). Blockchain-based incentive energy-knowledge trading in iot: Joint power transfer and ai design. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3024246.

    Article  Google Scholar 

  34. Liu, C., Chai, K.K., Zhang, X., & Chen, Y. (2019). Proof-of-benefit: A blockchain-enabled ev charging scheme. In: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala-Lumpur, Malaysia, pp. 1–6. IEEE .

  35. Meredith, J.M. (2020). 3gpp tr 22.186, service requirements for enhanced v2x scenarios. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3180. Accessed: 2020.

  36. Mondal, A., & Misra, S. (2015). Game-theoretic energy trading network topology control for electric vehicles in mobile smart grid. IET Networks, 4(4), 220–228.

    Article  Google Scholar 

  37. Odelu, V., Das, A. K., Wazid, M., & Conti, M. (2018). Provably secure authenticated key agreement scheme for smart grid. IEEE Transactions on Smart Grid, 9(3), 1900–1910.

    Google Scholar 

  38. Rasheed, I., Hu, F., Hong, Y., & Balasubramanian, B. (2020). Intelligent vehicle network routing with adaptive 3d beam alignment for mmwave 5g-based v2x communications. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.2973859.

    Article  Google Scholar 

  39. Rosen, J. B. “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games.” Econometrica, vol. 33, no. 3, 1965, pp. 520–534. JSTOR, https://doi.org/10.2307/1911749. Accessed 10 July 2021. 

  40. Samuel, O., & Javaid, N. (2021). A secure blockchain-based demurrage mechanism for energy trading in smart communities. International Journal of Energy Research, 45(1), 297–315.

    Article  Google Scholar 

  41. Sharma, V., You, I., & Guizani, N. (2020). Security of 5g–v2x: Technologies, standardization, and research directions. IEEE Network, 34(5), 306–314. https://doi.org/10.1109/MNET.001.1900662.

    Article  Google Scholar 

  42. Shukla, A., Bhattacharya, P., Tanwar, S., Kumar, N., & Guizani, M. (2020). Dwara: A deep learning-based dynamic toll pricing scheme for intelligent transportation systems. IEEE Transactions on Vehicular Technology, 69(11), 12510–12520. https://doi.org/10.1109/TVT.2020.3022168.

    Article  Google Scholar 

  43. Singh, M., & Kim, S. (2018). Branch based blockchain technology in intelligent vehicle. Computer Networks, 145, 219–231.

    Article  Google Scholar 

  44. Soliman, H. M., & Leon-Garcia, A. (2014). Game-theoretic demand-side management with storage devices for the future smart grid. IEEE Transactions on Smart Grid, 5(3), 1475–1485.

    Article  Google Scholar 

  45. Srinivas, J., Das, A. K., Kumar, N., & Rodrigues, J. J. P. C. (2020). Cloud centric authentication for wearable healthcare monitoring system. IEEE Transactions on Dependable and Secure Computing, 17(5), 942–956. https://doi.org/10.1109/TDSC.2018.2828306.

    Article  Google Scholar 

  46. Srivastava, A., Bhattacharya, P., Singh, A., Mathur, A., Prakash, O., & Pradhan, R. (2018). A distributed credit transfer educational framework based on blockchain. In: 2018 Second International Conference on Advances in Computing, Control and Communication Technology (IAC3T), Allahabad, India, pp. 54–59. IEEE.

  47. Su, Z., Wang, Y., Xu, Q., Fei, M., Tian, Y. C., & Zhang, N. (2019). A secure charging scheme for electric vehicles with smart communities in energy blockchain. IEEE Internet of Things Journal, 6(3), 4601–4613.

    Article  Google Scholar 

  48. Tanwar, S., Popat, A., Bhattacharya, P., Gupta, R., & Kumar, N. A taxonomy of energy optimization techniques for smart cities: Architecture and future directions. Expert Systems n/a(n/a), e12703. https://doi.org/10.1111/exsy.12703.

  49. Tanwar, S., Tyagi, S., & Kumar, N. (2019). Multimedia Big Data Computing for IoT Applications: Concepts. Paradigms and Solutions: Springer.

  50. Tanwar, S., Vora, J., Tyagi, S., Kumar, N., & Obaidat, M. S. (2018). A systematic review on security issues in vehicular ad hoc network. Security and Privacy, 1(5), e39. https://doi.org/10.1002/spy2.39.

    Article  Google Scholar 

  51. Tedeschi, P., Piro, G., Murillo, J. A. S., Ignjatov, N., Pilc, M., Lebloch, K., & Boggia, G. (2019). Blockchain as a service: Securing bartering functionalities in the h2020 symbiote framework. Internet Technology Letters, 2(1), e72. https://doi.org/10.1002/itl2.72.

    Article  Google Scholar 

  52. Wang, K., Chen, C. M., Liang, Z., Hassan, M. M., Sarné, G. M., Fotia, L., & Fortino, G. (2021). A trusted consensus fusion scheme for decentralized collaborated learning in massive iot domain. Information Fusion, 72, 100–109. https://doi.org/10.1016/j.inffus.2021.02.011.

    Article  Google Scholar 

  53. Wang, K., Wang, W., Wang, L., & Li, L. (2020). An improved soc control strategy for electric vehicle hybrid energy storage systems. Energies. https://doi.org/10.3390/en13205297.

    Article  Google Scholar 

  54. Xu, H., Klaine, P. V., Onireti, O., Cao, B., Imran, M., & Zhang, L. (2020). Blockchain-enabled resource management and sharing for 6g communications. Digital Communications and Networks, 6(3), 261–269. https://doi.org/10.1016/j.dcan.2020.06.002.

    Article  Google Scholar 

  55. Yun, J., Piran, M. J., & Suh, D. Y. (2018). Qoe-driven resource allocation for live video streaming over d2d-underlaid 5g cellular networks. IEEE Access, 6, 72563–72580. https://doi.org/10.1109/ACCESS.2018.2882441.

    Article  Google Scholar 

  56. Zhang, H., Wang, Z., & Liu, K. (2020). V2x offloading and resource allocation in sdn-assisted mec-based vehicular networks. China Communications, 17(5), 266–283.

    Article  Google Scholar 

  57. Zhang, T., Pota, H., Chu, C. C., & Gadh, R. (2018). Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency. Applied Energy, 226, 582–594.

    Article  Google Scholar 

Download references

Funding

No funding available for this manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeep Tanwar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, P., Tanwar, S., Bodkhe, U. et al. EVBlocks: A Blockchain-Based Secure Energy Trading Scheme for Electric Vehicles underlying 5G-V2X Ecosystems. Wireless Pers Commun 127, 1943–1983 (2022). https://doi.org/10.1007/s11277-021-08732-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08732-5

Keywords

Navigation