Skip to main content
Log in

Evaluation of near-singular integrals with application to vortex sheet flow

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a method to evaluate the near-singular line integrals that solve elliptic boundary value problems in planar and axisymmetric geometries. The integrals are near-singular for target points not on, but near the boundary, and standard quadratures lose accuracy as the distance d to the boundary decreases. The method is based on Taylor series approximations of the integrands that capture the near-singular behaviour and can be integrated in closed form. It amounts to applying the trapezoid rule with meshsize h, and adding a correction for each of the basis functions in the Taylor series. The corrections are computed at a cost of \(O(n_w)\) per target point, where typically, \(n_w\)=10–40. Any desired order of accuracy can be achieved using the appropriate number of terms in the Taylor series expansions. Two explicit versions of order \(O(h^2)\) and \(O(h^3)\) are listed, with errors that decrease as \(d\rightarrow 0\). The method is applied to compute planar potential flow past a plate and past two cylinders, as well as long-time vortex sheet separation in flow past an inclined plate. These flows illustrate the significant difficulties introduced by inaccurate evaluation of the near-singular integrals and their resolution by the proposed method. The corrected results converge at the analytically predicted rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Alben, S.: Flag flutter in inviscid channel flow. Phys. Fluids 27, 033603 (2015)

    Article  Google Scholar 

  2. Barnett, A., Wu, B., Veerapaneni, S.: Spectrally accurate quadratures for evaluation of layer potentials close to the boundary for the 2d Stokes and Laplace equations. SIAM J. Sci. Comput. 37(4), 519–542 (2015)

    Article  MathSciNet  Google Scholar 

  3. Barnett, A.H.: Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains. SIAM J. Sci. Comput. 36(2), A427–A451 (2014)

    Article  MathSciNet  Google Scholar 

  4. Beale, J.T., Lai, M.-C.: A method for computing nearly singular integrals. SIAM J. Numer. Anal. 38(6), 1902–1925 (2001)

    Article  MathSciNet  Google Scholar 

  5. Beale, J.T., Ying, W., Wilson, J.R.: A simple method for computing singular or nearly singular integrals on closed surfaces. Comm. Comput. Phys. 20, 733–753 (2016)

    Article  MathSciNet  Google Scholar 

  6. Carvalho, C., Khatri, S., Kim, A.D.: Asymptotic analysis for close evaluation of layer potentials. J. Comp. Phys. 355, 327–341 (2018)

    Article  MathSciNet  Google Scholar 

  7. Cortez, R.: The method of regularized Stokeslets. SIAM J. Sci. Comput. 23(4), 1204–1225 (2001)

    Article  MathSciNet  Google Scholar 

  8. Crowdy, D., Marshall, J.: On the motion of a point vortex around multiple circular islands. Phys. Fluids 17, 056602 (2005)

    Article  MathSciNet  Google Scholar 

  9. Darakananda, D., de Castro da Silva, A.F., Colonius, T., Eldredge, J.D.: Data-assimilated low-order modeling of separated flows. Phys Rev Fluids 3, 124701 (2018)

    Article  Google Scholar 

  10. Elling, V.W.: Vortex cusps. J. Fluid Mech. 882, A17 (2020). https://doi.org/10.1017/jfm.2019.827

    Article  MathSciNet  MATH  Google Scholar 

  11. Epstein, C.L., Greengard, L., Klöckner, A.: On the convergence of local expansions of layer potentials. SIAM J. Numer. Anal. 51(5), 2660–2679 (2013)

    Article  MathSciNet  Google Scholar 

  12. Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comp. Phys. 227, 2899–2921 (2008)

    Article  MathSciNet  Google Scholar 

  13. Huan, Y., Nitsche, M., Kanso, E.: Stability versus maneuverability in hovering flight. Phys. Fluids 27(6), 061706 (2015)

    Article  Google Scholar 

  14. Huan, Y., Nitsche, M., Kanso, E.: Hovering in oscillatory flows. J. Fluids Mech. 804, 531–549 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jones, M.: The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech 496, 405–441 (2003)

    Article  MathSciNet  Google Scholar 

  16. Jones, M., Shelley, M.J.: Falling cards. J. Fluid Mech 540, 393–425 (2005)

    Article  MathSciNet  Google Scholar 

  17. Khatri, S., Kim, A.D., Cortez, R., Carvalho, C.: Close evaluation of layer potentials in three dimensions. J. Comp. Phys. 423, 109798 (2020)

    Article  MathSciNet  Google Scholar 

  18. af Klinteberg, L., Tornberg, A.-K.: A fast integral equation method for solid particles in viscous flow using quadrature by expansion. J. Comp. Phys. 326, 420–445 (2016)

    Article  MathSciNet  Google Scholar 

  19. af Klinteberg, L., Tornberg, A.-K.: Error estimation for quadrature by expansion in layer potential evaluation. Adv. Comput. Math. 43, 195–234 (2017)

    Article  MathSciNet  Google Scholar 

  20. af Klinteberg, L., Tornberg, A.-K.: Adaptive quadrature by expansion for layer potential evaluation in two dimensions. SIAM J. Sci. Comp. 40(3), A1225–A1249 (2018)

    Article  MathSciNet  Google Scholar 

  21. Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comp. Phys. 252, 332–349 (2013)

    Article  MathSciNet  Google Scholar 

  22. Mayo, A.: Fast high order accurate solution of Laplace’s equation on irregular regions. SIAM J. Sci. Statist. Comput. 6, 144–157 (1985)

    Article  MathSciNet  Google Scholar 

  23. Nitsche, M.: Scaling properties of vortex ring formation at a circular tube opening. Phys. Fluids 8(7), 1848–1855 (1996)

    Article  Google Scholar 

  24. Nitsche, M.: Axisymmetric vortex sheet motion: accurate evaluation of the principal value integrals. SIAM J. Sci. Comput. 21(3), 1066–1084 (1999)

    Article  MathSciNet  Google Scholar 

  25. Nitsche, M.: Singularity formation in a cylindrical and a spherical vortex sheet. J. Comput Phys. 173(1), 208–230 (2001)

    Article  MathSciNet  Google Scholar 

  26. Nitsche, M., Ceniceros, H.D., Karniala, A.L., Naderi, S.: High order quadratures for the evaluation of interfacial velocities in axi-symmetric Stokes flows. J. Comp. Phys. 229, 6318–6342 (2010)

    Article  MathSciNet  Google Scholar 

  27. Nitsche, M., Krasny, R.: A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139–161 (1994)

    Article  MathSciNet  Google Scholar 

  28. Ojala, R., Tornberg, A.-K.: An accurate integral equation method for simulating multi-phase Stokes flow. J. Comp. Phys. 298, 145–160 (2015)

    Article  MathSciNet  Google Scholar 

  29. Pérez-Arancibia, C., Faria, L.M., Turc, C.: Harmonic density interpolation methods for high-order evaluation of Laplace layer potentials in 2D and 3D. Journal of Computational Physics 376, 411–434 (2019)

    Article  MathSciNet  Google Scholar 

  30. Quaife, B., Biros, G.: High-volume fraction simulations of two-dimensional vesicle suspensions. J Comp Phys 274(1), 245–267 (2014)

    Article  MathSciNet  Google Scholar 

  31. Rahimian, A., Barnett, A., Zorin, D.: Ubiquitous evaluation of layer potentials using quadrature by kernel-independent expansion. BIT Numerical Mathematics 58(2), 423–456 (2018)

    Article  MathSciNet  Google Scholar 

  32. Sheng, J.X., Ysasi, A., Kolomenskiy, D., Kanso, E., Nitsche, M., Schneider, K.: Simulating vortex wakes of flapping plates. Natural locomotion in fluids and on surfaces , 255–262 (2012)

  33. Shukla, R.K., Eldredge, J.D.: An inviscid model for vortex shedding from a deforming body. Theor. Comput. Fluid Dyn. 21, 343–368 (2007)

    Article  Google Scholar 

  34. Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J Sci. Comput. 3(2), 201–231 (1988)

    Article  MathSciNet  Google Scholar 

  35. Siegel, M., Tornberg, A.-K.: A local target specific quadrature by expansion method for evaluation of layer potentials in 3D. Michael Siegel and Anna-Karin Tornberg. J. Comp. Phys. 364, 365–392 (2018)

    Article  Google Scholar 

  36. Sohn, S.-I.: An inviscid model of unstead separated vortical flow for a moving plate. Theor. Comput. Fluid Dyn. 34, 187–213 (2020)

    Article  MathSciNet  Google Scholar 

  37. Tlupova, S., Beale, J.T.: Nearly singular integrals in 3D Stokes flow. Comm. Comput Phys. 14, 1207–1227 (2013)

    Article  MathSciNet  Google Scholar 

  38. Tlupova, S., Beale, J.T.: Regularized single and double layer integrals in 3D Stokes flow. J. Comp. Phys. 386, 568–584 (2019)

    Article  MathSciNet  Google Scholar 

  39. Xu, L., Nitsche, M., Krasny, R.: Computation of the starting vortex flow past a flat plate. Procedia IUTAM 20, 136–143 (2017)

    Article  Google Scholar 

  40. Ying, L., Biros, G., Zorin, D.: A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains. J Comp Phys 219(1), 247–275 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Robert Krasny for many discussions and helpful suggestions, and the anonymous reviewers for their supportive and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Nitsche.

Additional information

Communicated by Jeff D. Eldredge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 906 KB)

Supplementary material 2 (mp4 3269 KB)

Supplementary material 3 (mp4 7026 KB)

Supplementary material 4 (mp4 12249 KB)

Supplementary material 5 (mp4 17793 KB)

Supplementary material 6 (mp4 13189 KB)

Positivity of \(c^2\)

Positivity of \(c^2\)

This section shows that the quantity

$$\begin{aligned} c^2= |{\dot{{\mathbf{x}}}}_p|^2 + \ddot{{\mathbf{x}}}_p\cdot ({\mathbf{x}}_p-{\mathbf{x}_0}) \end{aligned}$$
(37)

is positive in the cases considered in this paper, namely a flat boundary with nonuniform point distribution and curved boundaries with equally spaced points. For curved boundaries with target points on the “inside”, defined below, d must be sufficiently small.

Fig. 23
figure 23

Sketch showing different scenarious: a flat curve, and b, c uniform arclength parametrization, \(s_{\alpha }=\)constant, with \({\mathbf{x}}_0\) outside of the curve in b and inside of the curve in c

In the flat case, see Fig. 23a, \(\ddot{{\mathbf{x}}}_p\) is tangent to the plate while \( {\mathbf{x}}_p-{\mathbf{x}_0}\) is normal to it, thus \( \ddot{{\mathbf{x}}}_p\cdot ({\mathbf{x}}_p-{\mathbf{x}_0})=0\) and

$$\begin{aligned} c^2= |{\dot{{\mathbf{x}}}}_p|^2 >0 \end{aligned}$$
(38)

for all d, and \({\mathbf{x}}_p\) in the plate interior.

In the equally spaced case, \(|{\dot{{\mathbf{x}}}}_p|=s_{\alpha }=constant\), where s is arclength and \(s_{\alpha }=ds/d\alpha \). We consider two possibilities: either \({\mathbf{x}_0}\) lies on the “outside” of the curve, as in Fig. 23b, or \({\mathbf{x}_0}\) lies on the “inside” of the curve, as in Fig. 23c. Here, the “outside” is defined as the side opposite to that pointed into by the normal vector \({\mathbf{N}}\) at \({\mathbf{x}}_p\), where

$$\begin{aligned} {\mathbf{N}}=\frac{1}{\kappa }\frac{d{\mathbf{T}}}{ds}~,\quad {\mathbf{T}}=\frac{d{\mathbf{x}}}{ds}~, \end{aligned}$$
(39)

while the “inside” is the side containing the osculating circle of the curve at \({\mathbf{x}}_p\). Here, \(\kappa =|d{\mathbf{T}}/ds|\) is the curvature at \({\mathbf{x}}_p\). Note that in the equally spaced case,

$$\begin{aligned} {\mathbf{T}}=\frac{{\dot{{\mathbf{x}}}}_p}{s_{\alpha }}~, \quad {\mathbf{N}}= \frac{d{\mathbf{T}}}{ds}/ \left| \frac{d{\mathbf{T}}}{ds}\right| =\frac{1}{\kappa }\frac{\ddot{{\mathbf{x}}}_p}{s_{\alpha }^2} ~. \end{aligned}$$
(40)

Thus if \({\mathbf{x}_0}\) is on the outside, \({\mathbf{x}}_p-{\mathbf{x}_0}=d{\mathbf{N}}\) and \(\ddot{{\mathbf{x}}}_p\cdot ({\mathbf{x}}_p-{\mathbf{x}_0})=d\kappa s_{\alpha }^2>0\) so

$$\begin{aligned} c^2=s_{\alpha }^2(1+d\kappa )> s_{\alpha }^2=|{\dot{{\mathbf{x}}}}_p|^2 >0~, \end{aligned}$$
(41)

for all d. If \({\mathbf{x}_0}\) is on the inside, \({\mathbf{x}}-{\mathbf{x}_0}=-d{\mathbf{N}}\) and \(\ddot{{\mathbf{x}}}_p\cdot ({\mathbf{x}}_p-{\mathbf{x}_0})=-d\kappa s_{\alpha }^2\). Therefore

$$\begin{aligned} c^2=s_{\alpha }^2(1-d\kappa )> \frac{1}{2}s_{\alpha }^2=\frac{1}{2}|{\dot{{\mathbf{x}}}}_p|^2 >0 ~, \end{aligned}$$
(42)

provided \(d<1/(2\kappa )=R_{osc}/2\), where \(R_{osc}=1/\kappa \) is the radius of the osculating circle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitsche, M. Evaluation of near-singular integrals with application to vortex sheet flow. Theor. Comput. Fluid Dyn. 35, 581–608 (2021). https://doi.org/10.1007/s00162-021-00577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00577-9

Keywords

Navigation