Skip to main content
Log in

Soil Spectral Databases

  • SOIL GENESIS AND GEOGRAPHY
  • Published:
Moscow University Soil Science Bulletin Aims and scope

Abstract

This paper identifies and discusses two trends in the digitalization of soil research data: (1) creation and maintenance of databases containing reflectance spectra of the upper soil horizons in the range of 300–2500 nm and information on the main physicochemical properties of these horizons; and (2) accumulation and actualization of already published spectra in the visible range (400–750 nm) and incorporation of the data on all horizons constituting the soil profile into the spectral databases, which makes it possible to identify both individual horizons and entire profiles. The second trend widely uses color parameters of soils; this applies both to international optical systems and to Russian-specific indicatory systems. The algorithms used in such databases can be applied in studies involving open-access global soil libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Vinogradov, B.V., Aerokosmicheskii monitoring ekosistem (Agrochemical Monitoring for Ecosystems), Moscow, 1984.

    Google Scholar 

  2. Karmanov, I.I., Soils research according to spectral composition of reflected radiation, Pochvovedenie, 1970, no. 4.

  3. Karmanov, I.I., Spectral reflecting capacity and soils color as an index of their properties, Doctoral Sci. (Agric.) Dissertation, Moscow, 1973.

  4. Karmanov, I.I., Spektral’naya otrazhatel’naya sposobnost’ i tsvet pochv kak pokazateli ikh svoistv (Spectral Reflecting Capacity and Soils Color as an Index of Their Properties), Moscow, 1974.

  5. Kirillova, N.P., Complex approach to soil cartography on the base of digital morphometry and combinatory analysis, Doctoral. Sci. (Biol.) Dissertation, Moscow, 2018.

  6. Kirillova, N.P., Evstratov, P.A., Azikov, D.A., et al., PC Software Certificate no. 2020621406, Ofits. Byull. Progr. EVM. Bazy Dannykh. Topol. Integr. Mikroskhem, 2020, no. 8.

  7. Kirillova, N.P., Sileva, T.M., Ul’yanova, T.Yu., et al., Color diagnostics of soil horizons (by the example of soils from Moscow Region), Eurasian Soil Sci., 2018, vol. 51, no. 11, pp. 1348–1357.

    Article  Google Scholar 

  8. Mikhailova, N.A. and Orlov, D.S., Opticheskie svoistva pochv i pochvennykh komponentov (Optical Properties for Soils and Soil Components), Moscow, 1986.

    Google Scholar 

  9. Orlov, D.S., Khimiya pochv (Soils Chemistry), Moscow, 1992.

    Google Scholar 

  10. Orlov, D.S., Vorob’eva, L.A., and Sukhanova, N.I., Quantitative parameters of soil spectral reflecting capacity, Vestn. Mosk. Univ., Ser. 17. Pochvoved., 1995, no. 4.

  11. Sadovnikov, Yu.N., Spectral reflecting capacity variation according to the main genetic soil types profile, Vestn. Mosk. Univ., Ser. 17. Pochvoved., 1980, no. 1.

  12. Baldridge, A.M., Hook, S.J., Grove, C.I., and Rivera, G., The ASTER spectral library version 2.0, Remote Sens. Environ., 2009, vol. 113, no. 4, pp. 711–715.

    Article  Google Scholar 

  13. Brodský, L., Klement, A., Penižek, V., et al., Building soil spectral library of the Czech soils for quantitative digital soil mapping, Soil Water Res., 2011, vol. 6, no. 4.

  14. Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., and Smaling, E.M.A., Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique, Geoderma, 2012, vol. 183–184, pp. 41–48.

    Article  Google Scholar 

  15. Colorimetry, CIE Techn. Rep., Vienna, 2004, no. 15.

  16. Demattê, J.A.M., Dotto, A.C., Paiva, A.F.S., et al., The Brazilian Soil Spectral Library (BSSL): a general view, application and challenges, Geoderma, 2019, vol. 354, p. 113793.

    Article  Google Scholar 

  17. Demattê, J.A.M., Safanelli, J.L., Poppiel, R.R., et al., Bare Earth’s surface spectra as a proxy for soil resource monitoring, Sci. Rep., 2020, vol. 10, no. 1.https://doi.org/10.1038/s41598-020-61408-1

  18. Garrity, D. and Bindraban, P., A Globally Distributed Soil Spectral Library Visible Near Infrared Diffuse Reflectance Spectra, Nairobi: World Agroforestry Centre, ISRIC, 2004.

  19. Gogé, F., Joffre, R., Jolivet, C., et al., Optimization criteria in sample selection step of local regression for quantitative analysis of large soil NIRS database, Chemom. Intell. Lab. Syst., 2012, vol. 110, no. 1, pp. 168–176.

    Article  Google Scholar 

  20. Ji, W., Li, S., Chen, S., et al., Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions, Soil Tillage Res., 2016, vol. 155, pp. 492–500.

    Article  Google Scholar 

  21. Knadel, M., Deng, F., Thomsen, A., and Greve, M., Development of a Danish national Vis–NIR soil spectral library for soil organic carbon determination, Proc. 5th Global Workshop on Digital Soil Mapping “Digital Soil Assessments and Beyond”, Minasny, B., et al., Eds., Sydney, 2012.

  22. Shepherd, K.D. and Walsh, M.G., Development of reflectance spectral libraries for characterization of soil properties, Soil Sci. Soc. Am. J., vol. 66, no. 3, pp. 988–998. https://doi.org/10.2136/sssaj2002.9880

  23. Soil survey staff, soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, in Natural Resources Conservation Service, 12th ed., Washington: U.S. Department of Agriculture, 2014.

  24. Stevens, A., Nocita, M., Tóth, G., et al., Prediction of soil organic carbon at the European scale by visible and near InfraRed reflectance spectroscopy, PLoS One, 2013, vol. 8, no. 6, p. e66409.

    Article  Google Scholar 

  25. Terra, F.S., Demattê, J.A.M., and Viscarra Rossel, R.A., Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing vis-NIR and mid-IR reflectance data, Geoderma, 2015, vols. 255–256, pp. 81–93.

    Article  Google Scholar 

  26. Terra, F.S., Dematte, J.A.M., and Viscarra Rossel, R.A., Proximal spectral sensing in pedological assessments: vis-NIR spectra for soil classification based on weathering and pedogenesis, Geoderma, 2018, vol. 318, pp. 123–136.

    Article  Google Scholar 

  27. Viscarra Rossel, R.A. and Behrens, T., Using data mining to model and interpret soil diffuse reflectance spectra, Geoderma, 2010, vol. 158, nos. 1–2, pp. 46–54.

    Article  Google Scholar 

  28. Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., et al., A global spectral library to characterize the world’s soil, Earth-Sci. Rev., 2016, vol. 155, pp. 198–230.

    Article  Google Scholar 

  29. Viscarra Rossel, R.A., Minasny, B., Roudier, P., and McBratney, A.B., Colour space models for soil science, Geoderma, 2006, vol. 133, nos. 3–4, pp. 320–337.

    Article  Google Scholar 

  30. Viscarra Rossel, R.A. and Webster, R., Predicting soil properties from the Australian soil visible-near infrared spectroscopic database, Eur. J. Soil Sci., 2012, vol. 63, no. 6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Kirillova, D. M. Khomiakov, E. I. Karavanova, D. A. Azikov or D. A. Zhulidova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by L. Emeliyanov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillova, N.P., Khomiakov, D.M., Karavanova, E.I. et al. Soil Spectral Databases. Moscow Univ. Soil Sci. Bull. 76, 54–59 (2021). https://doi.org/10.3103/S0147687421020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147687421020034

Keywords:

Navigation