Skip to main content
Log in

Weak solutions for potential mean field games of controls

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We analyze a system of partial differential equations that model a potential mean field game of controls, briefly MFGC. Such a game describes the interaction of infinitely many negligible players competing to optimize a personal value function that depends in aggregate on the state and, most notably, control choice of all other players. A solution of the system corresponds to a Nash Equilibrium, a strategy for which no one player can improve by altering only their own action. We investigate the second order, possibly degenerate, case with non-strictly elliptic diffusion operator and local coupling function. The main result exploits potentiality to employ variational techniques to provide a unique weak solution to the system, with additional space and time regularity results under additional assumptions. New analytical subtleties occur in obtaining a priori estimates with the introduction of an additional coupling that depends on the state distribution as well as feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer, Berlin (2013)

    Book  Google Scholar 

  3. Bonnans, J.F., Gianatti, J., Pfeiffer, L.: A Lagrangian approach for aggregative mean field games of controls with mixed and final constraints (2021)

  4. Bonnans, J.F., Hadikhanloo, S., Pfeiffer, L.: Schauder estimates for a class of potential mean field games of controls. Appl. Math. Optim. 83, 1–34 (2019)

  5. Cardaliaguet, P.: Weak solutions for first order mean field games with local coupling. In: Bettiol, P., Cannarsa, P., Colombo, G., Motta, M., Rampazzo, F. (eds.) Analysis and Geometry in Control Theory and its Applications. Springer INdAM Series, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-06917-3_5

  6. Cardaliaguet, P., Graber, P.J.: Mean field games systems of first order. ESAIM COCV 21(3), 690–722 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D.: Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ. Equ. Appl. NoDEA 22(5), 1287–1317 (2015)

    Article  MathSciNet  Google Scholar 

  8. Cardaliaguet, P., Lehalle, C.-A.: Mean field game of controls and an application to trade crowding. Math. Financ. Econ. 12, 335–363 (2018)

    Article  MathSciNet  Google Scholar 

  9. Carmona, R., Delarue, F. (2017) Probabilistic theory of mean field games: vol. I, mean field FBSDEs, control, and games. In: Stochastic Analysis and Applications. Springer, Berlin

  10. Carmona, R., Delarue, F.: Probabilistic theory of mean field games: vol. II, mean field games with common noise and master equations. In: Stochastic Analysis and Applications. Springer (2017)

  11. Chan, P., Sircar, R.: Bertrand and Cournot mean field games. Appl. Math. Optim. 71(3), 533–569 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chan, P., Sircar, R.: Fracking, renewables, and mean field games. SIAM Rev. 59(3), 588–615 (2017)

    Article  MathSciNet  Google Scholar 

  13. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  14. Gomes, D.A., Patrizi, S., Voskanyan, V.: On the existence of classical solutions for stationary extended mean field games. Nonlinear Anal. Theory Methods Appl. 99, 49–79 (2014)

    Article  MathSciNet  Google Scholar 

  15. Gomes, D.A., Voskanyan, V.K.: Extended deterministic mean-field games. SIAM J. Control Optim. 54(2), 1030–1055 (2016)

    Article  MathSciNet  Google Scholar 

  16. Graber, P.J., Bensoussan, A.: Existence and uniqueness of solutions for Bertrand and Cournot mean field games. Appl. Math. Optim. 77(1), 47–71 (2018)

    Article  MathSciNet  Google Scholar 

  17. Graber, P.J., Mészáros, A.R.: Sobolev regularity for first order mean field games. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 35(6), 1557–1576 (2018)

    Article  MathSciNet  Google Scholar 

  18. Graber, P.J., Mészáros, A.R., Silva, F.J., Tonon, D.: The planning problem in mean field games as regularized mass transport. Calc. Var. Partial Differ. Equ. 58(3), 115 (2019)

    Article  MathSciNet  Google Scholar 

  19. Graber, P.J., Mouzouni, C.: Variational mean field games for market competition. In: Cardaliaguet, P., Porretta, A., Salvarani, F. (eds.) PDE Models for Multi-Agent Phenomena. Springer INdAM Series, vol. 28. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01947-1_5

  20. Graber, P.J., Mouzouni, C.: On mean field games models for exhaustible commodities trade. ESAIM COCV 26, 11 (2020)

    Article  MathSciNet  Google Scholar 

  21. Guéant, O., Lasry, J.-M., Lions, P.-L.: Mean field games and applications. In: Paris-Princeton lectures on mathematical finance 2010, pp. 205–266. Springer, Berlin, Heidelberg (2011)

  22. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Ishii, H.: On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions. Funkc. Ekvac 38(1), 101–120 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Jameson Graber, P., Ignazio, V., Neufeld, A.: Nonlocal Bertrand and Cournot mean field games with general nonlinear demand schedule. J. Math. Pures Appl. 148, 150–198 (2021). https://doi.org/10.1016/j.matpur.2021.02.002

  25. Kobeissi, Z.: On classical solutions to the mean field game system of controls (2019)

  26. Kobeissi, Z.: Mean field games with monotonous interactions through the law of states and controls of the agents (2020)

  27. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Mullenix.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graber, P.J., Mullenix, A. & Pfeiffer, L. Weak solutions for potential mean field games of controls. Nonlinear Differ. Equ. Appl. 28, 50 (2021). https://doi.org/10.1007/s00030-021-00712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00712-9

Keywords

Mathematics Subject Classification

Navigation