Skip to main content
Log in

PLASTIC TORSION AT HIGH PRESSURE WITH NON-UNIFORM STRESS STATE

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

An analytical solution for high-pressure torsion of a cylindrical sample placed in a rigid gasket is obtained. The sample material is assumed to be isotropic ideally plastic. The dependence of the yield strength on pressure is taken into account. A non-associated plastic flow model is used, which includes the Tresca plastic potential and the Mohr–Coulomb yield condition. The solution predicts the non-uniform stress in the sample. The stress state corresponds to the Haar–von Karman hypothesis. The torque, the average normal stress at the end of the cylindrical sample, and the distribution of the mean stress along the radius of the sample are determined. The conditions under which there is no slippage on the contact surface are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. W. Bridgman, “Effects of high shearing stress combined with high hydrostatic pressure,” Phys. Rev., 48, 825–847 (1935). https://doi.org/10.1103/PhysRev.48.825

    Article  ADS  Google Scholar 

  2. P. W. Bridgman, Studies in Large Plastic Flow and Fracture: with Special Emphasis on the Effects of Hydrostatic Pressure (McGraw-Hill, New York,1952).

    MATH  Google Scholar 

  3. L. F. Vereshchagin and V. A. Shapochkin, “Effect of hydrostatic pressure on the shear strength of solids,” Fiz. Metal. Metalloved. 9, 258–264 (1960).

    Google Scholar 

  4. V. D. Blank, Y. S. Konyaev, A. I. Kuznetsov, and E. I. Estrin, “A diamond chamber for examining the effects of shear deformation on the structure and properties of solids at pressures up to 43 GPa,” Instrum. Exp. Tech. 27 (5), 1240–1242 (1984).

    Google Scholar 

  5. R. Z. Valiev, R. I. Kaibyshev, O. A. Kuznetsov, et al., “Low-temperature superplasticity of metallic materials,” Sov. Phys. Dokl. 33 (8), 626–627 (1988).

    ADS  Google Scholar 

  6. K. Edalati and Z. Horita, “A review on high-pressure torsion (HPT) from 1935 to 1988,” Mat. Sci. Eng. A – Struct. 652, 325–352 (2016). https://doi.org/10.1016/j.msea.2015.11.074

    Article  Google Scholar 

  7. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103-189 (2000). https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  8. V. I. Levitas, “High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils,” Mater. Trans. 60 (7), 1294–1301 (2019). https://doi.org/10.2320/matertrans.MF201923

    Article  Google Scholar 

  9. A. P. Zhilyaev and T.G. Langdon, “Using high-pressure torsion for metal processing: fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008). https://doi.org/10.1016/j.pmatsci.2008.03.002

    Article  Google Scholar 

  10. R. Wadsack, R. Pippan, and B. Schedler, “Structural refinement of chromium by severe plastic deformation,” Fusion Eng. Des. 66-68, 265–269 (2003). https://doi.org/10.1016/S0920-3796(03)00136-4

    Article  Google Scholar 

  11. Y. Ma, V. I. Levitas, and J. Hashemi, “X-ray diffraction measurements in a rotational diamond anvil cell,” J. Phys. Chem. Solids. 67 (9), 2083–2090 (2006). https://doi.org/10.1016/j.jpcs.2006.05.052

    Article  ADS  Google Scholar 

  12. S.-H. Joo and H. S. Kim, “Ring-constraint high-pressure torsion process,” Metall. Mater. Trans. A. 47 (7), 3473–3478 (2016). https://doi.org/10.1007/s11661-016-3518-3

    Article  Google Scholar 

  13. B. Feng, V. I. Levitas, and W. Li, “FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell,” Int. J. Plasticity 113, 236–254 (2019). https://doi.org/10.1016/j.ijplas.2018.10.004

    Article  Google Scholar 

  14. Y. Beygelzimer, R. Kulagin, L. S. Toth, and Y. Ivanisenko, “The self-similarity theory of high pressure torsion,” Beilstein J. Nanotechnol. 7, 1267–1277 (2016). https://doi.org/10.3762/bjnano.7.117

    Article  Google Scholar 

  15. G. M. Sevastyanov, “Torsion with circular shear of a Mooney – Rivlin solid,” Mech. Solids 55 (2), 273–276 (2020). https://doi.org/10.3103/S0025654420020156

    Article  ADS  Google Scholar 

  16. V. I. Levitas, “High-pressure mechanochemistry: Conceptual multiscale theory and interpretation of experiments,” Phys. Rev. B. 70, 184118 (2004). https://doi.org/10.1103/PhysRevB.70.184118

    Article  ADS  Google Scholar 

  17. Y. Estrin, A. Molotnikov, C. H. J. Davies, and R. Lapovok, “Strain gradient plasticity modelling of high-pressure torsion,” J. Mech. Phys. Solids. 56 (4), 1186–1202 (2008). https://doi.org/10.1016/j.jmps.2007.10.004

    Article  ADS  MATH  Google Scholar 

  18. V. A. Lubarda, “Rigid-plastic torsion of a hollow tube in strain-gradient plasticity,” Int. J. Solids Struct. 100-101, 127–137 (2016). https://doi.org/10.1016/j.ijsolstr.2016.07.029

    Article  Google Scholar 

  19. V. I. Levitas, Y. Ma, J. Hashemi, et al., “Strain-induced disorder, phase transformations, and transformation-induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: In situ x-ray diffraction study and modeling,” J. Chem. Phys. 125, 044507 (2006). https://doi.org/10.1063/1.2208353

    Article  ADS  Google Scholar 

  20. V. I. Levitas, Large Deformation of Materials with Complex Rheological Properties at Normal and High Pressure (Nova Science Publishers, New York. 1996).

    Google Scholar 

  21. N. Kh. Arutyunyan and Yu. N. Radayev, “Elastoplastic torsion of a cylindrical rod for finite deformations,” J. Appl. Math. Mech. 53 (6). P. 804–811 (1989). https://doi.org/10.1016/0021-8928(89)90090-7

    Article  MathSciNet  MATH  Google Scholar 

  22. G. M. Sevastyanov and A. A. Burenin, “Finite strain upon elastic–plastic torsion of an incompressible circular cylinder,” Dokl. Phys. 63, 393–395 (2018). https://doi.org/10.1134/S1028335818090094

    Article  ADS  Google Scholar 

  23. G. M. Sevast’yanov and A. A. Burenin, “Local adiabatic heating effect in finite-strain elastic-plastic torsion,” J. Appl. Mech. Tech. Phys. 60, 1104–1114 (2019). https://doi.org/10.1134/S0021894419060166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. G. M. Sevastyanov, “Analytical solution for high-pressure torsion in the framework of geometrically nonlinear non-associative plasticity,” Int. J. Solids Struct. 206, 383-395 (2020). https://doi.org/10.1016/j.ijsolstr.2020.09.028

    Article  Google Scholar 

  25. Q.-C. He, C. Vallée, and C. Lerintiu, “Explicit expressions for the plastic normality-flow rule associated to the Tresca yield criterion,” Z. Angew. Math. Phys. 56 (2), 357–366 (2005). https://doi.org/10.1007/s00033-005-4121-4

    Article  MathSciNet  MATH  Google Scholar 

  26. W. T. Koiter, “Stress-strain relations, uniqueness and variational theorems for elasto-plastic materials with a singular yield surface,” Quart. Appl. Math. 11, 350–354 (1953). https://doi.org/10.1090/qam/59769

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Itskov, Tensor Algebra and Tensor Analysis for Engineers with Applications to Continuum Mechanics (Springer, 2015).

    MATH  Google Scholar 

  28. D. D. Ivlev, Mechanics of Plastic Media, Vol. 1: Theory of Ideal Plasticity (Fizmatlit, Moscow, 2001) [in Russian].

  29. B. R. Seth, “Elastic-plastic transition in torsion,” Z. Angew. Math. Mech. 44 (6), 229–233 (1964). https://doi.org/10.1002/zamm.19640440602

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of the KhFRC FEB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Sevast’yanov.

Additional information

Translated by M. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevast’yanov, G.M. PLASTIC TORSION AT HIGH PRESSURE WITH NON-UNIFORM STRESS STATE. Mech. Solids 56, 368–375 (2021). https://doi.org/10.3103/S0025654421030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421030109

Keywords:

Navigation