Skip to main content

Advertisement

Log in

Biocontrol of tomato bacterial spot by novel Bacillus and Pseudomonas strains

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial spot is a disease that affects tomato worldwide reducing its yield and quality. It is caused by different Xanthomonas spp., among which is Xanthomonas vesicatoria. Copper-based bactericides are generally used to control this disease, although nowadays sustainable strategies are being searched to efficiently replace their use. Our aim was to select native bacteria from tomato rhizosphere with biocontrol properties against X. vesicatoria. We selected, characterized, and identified three novel strains, two closely related to Bacillus velezensis (VMA11p and VM05) and one closely related to Pseudomonas soli (VMAP1), that in vitro antagonized X. vesicatoria. We evaluated the efficacy of the three rhizobacteria and their cell-free supernatants to control bacterial spot using the model tomato-X. vesicatoria in plants grown in pots, in greenhouse conditions. Bacterial suspensions of VMA11p and VMAP1, applied to the soil by irrigation, significantly (P < 0.05) reduced bacterial spot severity by 53.9% and 44.2%, respectively. Nevertheless, the most effective strategy to control bacterial spot was achieved using the cell-free supernatant produced by VMA11p, VM05 or VMAP1 applied as foliar spray, which significantly (P < 0.05) reduced the severity of the disease by 98.5%, 94.2% and 75.2%, respectively. None of the treatments reduced the growth of tomato plants. Our results suggest that the use of these novel strains of Bacillus and Pseudomonas and/or their metabolic products could be used for the development of biocontrol strategies for the management of bacterial spot in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An, S.-Q., Potnis, N., Dow, M., Vorhölter, F.-J., He, Y.-Q., Becker, A., Teper, D., Li, Y., Wang, N., Bleris, L., & Tang, J. L. (2020). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiology Reviews, 44(1), 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Aznar, A., & Dellagi, A. (2015). New insights into the role of siderophores as triggers of plant immunity: What can we learn from animals? Journal of Experimental Botany, 66(11), 3001–3010.

    Article  CAS  PubMed  Google Scholar 

  • Bacon, C. W., Palencia, E. R., & Hinton, D. M. (2015). Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. In Plant Microbes Symbiosis: Applied Facets (pp. 163-177): Springer.

  • Borriss, R., Wu, H., & Gao, X. (2019). Secondary metabolites of the plant growth promoting model Rhizobacterium Bacillus velezensis FZB42 are involved in direct suppression of plant pathogens and in stimulation of plant-induced systemic resistance. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms (pp. 147-168): Springer.

  • Cadmus, M. C., Rogovin, S. P., Burton, K. A., Pittsley, J. E., Knutson, C. A., & Jeanes, A. (1976). Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain. Canadian Journal of Microbiology, 22(7), 942–948.

  • Cappuccino, J. G., & Sherman, N. (2005). Microbiology: A laboratory manual.

    Google Scholar 

  • da Silva, R. S., Moutinho, B. L., dos Santos, D. R., Vasconcelo-Rodrigues, I., Talamini, V., Fernandes, M. F., et al. (2018). Using antagonistic soil bacteria and their cell-free filtrates to control the black rot pathogen Xanthomonas campestris pv. campestris. Journal of Phytopathology, 166(7–8), 494–501.

    Article  Google Scholar 

  • Debois, D., Jourdan, E., Smargiasso, N., Thonart, P., De Pauw, E., & Ongena, M. (2014). Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Analytical Chemistry, 86(9), 4431–4438.

    Article  CAS  PubMed  Google Scholar 

  • Di Rienzo, J. (2017). InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

  • Fan, B., Blom, J., Klenk, H.-P., & Borriss, R. (2017). Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Frontiers in Microbiology, 8(22), https://doi.org/10.3389/fmicb.2017.00022.

  • Felipe, V., Romero, A., Montecchia, M. S., Vojnov, A. A., Bianco, M. I., & Yaryura, P. M. (2018). Xanthomonas vesicatoria virulence factors involved in early stages of bacterial spot development in tomato. Plant Pathology, 67(9), 1936–1943.

    Article  CAS  Google Scholar 

  • Fira, D., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285, 44–55.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R. (2020). Biocontrol of Bacteria and fungi. In Beneficial Plant-Bacterial Interactions (pp. 181-230): Springer.

  • Graves, A., & Alexander, S. (2002). Managing bacterial speck and spot of tomato with acibenzolar-S-methyl in Virginia. Plant Health Progress, 3(1), 11.

    Article  Google Scholar 

  • Jones, J. B., Zitter, T. A., Momol, T. M., & Miller, S. A. (2014). Compendium of tomato diseases and pests.

    Google Scholar 

  • Keshavarz-Tohid, V., Vacheron, J., Dubost, A., Prigent-Combaret, C., Taheri, P., Tarighi, S., Taghavi, S. M., Moënne-Loccoz, Y., & Muller, D. (2019). Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Systematic and Applied Microbiology, 42(4), 468–480.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labuschagne, N., Pretorius, T., & Idris, A. (2010). Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In Plant growth and health promoting bacteria (pp. 211-230): Springer.

  • Lamichhane, J. R., Osdaghi, E., Behlau, F., Köhl, J., Jones, J. B., & Aubertot, J.-N. (2018). Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for Sustainable Development, 38(3), 28.

    Article  Google Scholar 

  • Liu, G., Lin, X., Xu, S., Liu, G., Liu, F., & Mu, W. (2020). Screening, identification and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato. Pest Management Science, 76(6), 2217–2224.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K., Garrett, C., Fadamiro, H., & Kloepper, J. W. (2016). Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control, 99, 8–13.

    Article  Google Scholar 

  • Malamud, F., Torres, P. S., Roeschlin, R., Rigano, L. A., Enrique, R., Bonomi, H. R., Castagnaro, A. P., Marano, M. R., & Vojnov, A. A. (2011). The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology, 157(3), 819–829.

    Article  CAS  PubMed  Google Scholar 

  • Marin, V. R., Ferrarezi, J. H., Vieira, G., & Sass, D. C. (2019). Recent advances in the biocontrol of Xanthomonas spp. World Journal of Microbiology and Biotechnology, 35(5), 72. https://doi.org/10.1007/s11274-019-2646-5.

    Article  PubMed  Google Scholar 

  • Nanda, A. K., Andrio, E., Marino, D., Pauly, N., & Dunand, C. (2010). Reactive oxygen species during plant-microorganism early interactions. Journal of Integrative Plant Biology, 52(2), 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Omoboye, O. O., Oni, F. E., Batool, H., Yimer, H., De Mot, R., & Höfte, M. (2019). Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism. Frontiers in Plant Science, 10, 901.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paret, M. L., Palmateer, A. J., & Knox, G. W. (2013). Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. HortScience, 48(2), 189–192.

    Article  CAS  Google Scholar 

  • Pascual, J., García-López, M., Carmona, C., & Sousa, T. d. S., de Pedro, N., Cautain, B., et al. (2014). Pseudomonas soli sp. nov., a novel producer of xantholysin congeners. Systematic and Applied Microbiology, 37(6), 412–416.

    Article  CAS  PubMed  Google Scholar 

  • Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad, G. E., & Jones, J. B. (2015). Bacterial spot of tomato and pepper: Diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16(9), 907–920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qessaoui, R., Bouharroud, R., Furze, J., El Aalaoui, M., Akroud, H., Amarraque, A., et al. (2019). Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Scientific Reports, 9(1), 1–10.

    Article  Google Scholar 

  • Rabbee, M. F., Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K.-h. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6), 1046.

    Article  CAS  PubMed Central  Google Scholar 

  • Ritchie, D. F., & Dittapongpitch, V. (1991). Copper-and streptomycin-resistant strains and host differentiated races of Xanthomonas campestris pv. vesicatoria in North Carolina. Plant Disease, 75, 733–736.

    Article  CAS  Google Scholar 

  • Romero, A., Kousik, C., & Ritchie, D. (2001). Resistance to bacterial spot in bell pepper induced by acibenzolar-S-methyl. Plant Disease, 85(2), 189–194.

    Article  CAS  PubMed  Google Scholar 

  • Romero, A. M., Correa, O. S., Moccia, S., & Rivas, J. G. (2003). Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. Journal of Applied Microbiology, 95(4), 832–838.

    Article  CAS  PubMed  Google Scholar 

  • Santoyo, G., Orozco-Mosqueda, M. d. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22(8), 855–872.

    Article  Google Scholar 

  • Shemesh, M., & Chai, Y. (2013). A Combination of Glycerol and Manganese Promotes Biofilm Formation in Bacillus subtilis via Histidine Kinase KinD Signaling. Journal of Bacteriology, 195, 2747–2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., & Bhattarai, K. (2019). Progress in developing bacterial spot resistance in tomato. Agronomy, 9(1), 26.

    Article  CAS  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng, J., Wang, Y., Li, J., Shen, Q., & Zhang, R. (2013). Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Applied Microbiology and Biotechnology, 97(19), 8823–8830.

    Article  CAS  PubMed  Google Scholar 

  • Yaryura, P. M., Leon, M., Correa, O. S., Kerber, N. L., Pucheu, N. L., & Garcia, A. F. (2008). Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Current Microbiology, 56(6), 625–632.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank technical assistance: Albino Rivas and Horacio Ledesma (from Plant Pathology at Faculty of Agronomy, University of Buenos Aires) in the biocontrol trials.

MIB, NM and PMY are Career Investigators of CONICET, VF is a postdoctoral fellow from CONICET, and AMR is professor and researcher at the UBA.

Code availability

Not applicable.

Funding

This work was supported by ANPCyT (PICT 2017-2699), project PIO CONICET-UNVM (grant number 20320150100008CO), PIODO (grant number N° 0058/2018 MinCyT, Córdoba, Argentina), PIO (grant number Nº 41/2020 MinCyT Córdoba, GRFT 109/2017 MinCyT Córdoba, UNVM (594/2018) and UBACyT (grant number 20020170100695BA).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by V. Felipe, M.I. Bianco, M. Terrestre, N. Mielnichuk. The first draft of the manuscript was written by M.I. Bianco and P.M. Yaryura, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P.M. Yaryura.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Ethics approval

The manuscript complies to the Ethical Rules applicable for this journal.

Consent to participate

All authors whose names appear on the submission agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Consent for publication

All authors agreed with the content and gave explicit consent to submit this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felipe, V., Bianco, M., Terrestre, M. et al. Biocontrol of tomato bacterial spot by novel Bacillus and Pseudomonas strains. Eur J Plant Pathol 160, 935–948 (2021). https://doi.org/10.1007/s10658-021-02297-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02297-6

Keywords

Navigation