Skip to main content
Log in

Population structure of the fungus Sclerotinia sclerotiorum in common bean fields of Argentina

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

S. sclerotiorum is the causal agent of the white mould disease on common bean crops, one of the most threatening fungal diseases occurring across major bean production regions. Currently, there are no commercial cultivars with high levels of genetic resistance to white mould. The aim of this study was to analyse the population structure of 109 isolates of S. sclerotiorum from six dry bean fields in the main production area of Argentina using nine microsatellite loci. A total of 30 multilocus haplotypes (MLHs) were identified, of which 18 MLHs were unique. The remaining 12 MLHs were constituted by 83% of the isolates, six MLHs of which (composed of 75 isolates) were shared at least between two locations. Population genetic structure analysis and discriminant analysis of principal components (DAPC) identified two genetic clusters (subpopulations). The genetic cluster 1 (GC 1) was composed of 21 isolates and 15 MLHs. Similarly, the genetic cluster 2 (GC 2) was composed of 23 isolates and 15 MLHs. These two genetic clusters were observed in most locations sampled. Low levels of genetic differentiation (ΦST = 0.198; P < 0.0001) followed by high levels of gene flow (Nm > 1) between genetic clusters were observed. Linkage disequilibrium analysis showed that one of the two genetic subpopulations was under linkage equilibrium (P > 0.001), which is consistent with recombinant populations. These results suggest the occurrence of both modes of reproductive behaviour, clonal and recombining, compromising the durability of management strategies for white mould disease in common bean cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  • Abán, C. L., Taboada, G., Spedaletti, Y., Aparicio, M., Curti, R. N., Casalderrey, N., et al. (2018). Molecular, morphological and pathogenic diversity of Sclerotinia sclerotiorum isolates from common bean (Phaseolus vulgaris) fields in Argentina. Plant Pathology, 67, 1740–1748.

    Article  CAS  Google Scholar 

  • Agapow, P.-M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1(1–2), 101–102, 102.

  • Aldrich-Wolfe, L., Travers, S., & Nelson, B. D. (2015). Genetic variation of Sclerotinia sclerotiorum from multiple crops in the north Central United States. PLoS One, 10(9), e0139188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atallah, Z. K., Larget, B., Chen, X., & Johnson, D. a. (2004). High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia Basin of Washington state. Phytopathology, 94(7), 737–742.

    Article  CAS  PubMed  Google Scholar 

  • Attanayake, R. N., Porter, L., Johnson, D. A., & Chen, W. (2012). Genetic and phenotypic diversity and random association of DNA markers of isolates of the fungal plant pathogen Sclerotinia sclerotiorum from soil on a fine geographic scale. Soil Biology and Biochemistry, 55, 28–36.

    Article  CAS  Google Scholar 

  • Attanayake, R. N., Carter, P. A., Jiang, D., Del Río-Mendoza, L., & Chen, W. (2013). Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology, 103(7), 750–761.

    Article  CAS  PubMed  Google Scholar 

  • Attanayake, R. N., Tennekoon, V., Johnson, D. A., Porter, L. D., del Río-Mendoza, L., Jiang, D., & Chen, W. (2014). Inferring outcrossing in the homothallic fungus Sclerotinia sclerotiorum using linkage disequilibrium decay. Heredity, 113(4), 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attanayake, R. N., Xu, L., & Chen, W. (2019). Sclerotinia sclerotiorum populations: Clonal or recombining? Tropical Plant Pathology, 44(1), 23–31.

    Article  Google Scholar 

  • Bardin, S. D., & Huang, H. C. (2001). Research on biology and control of Sclerotinia diseases in Canada. Canadian Journal of Plant Pathology, 23, 88–98.

    Article  Google Scholar 

  • Billiard, S., López-Villavicencio, M., Hood, M. E., & Giraud, T. (2012). Sex, outcrossing and mating types: Unsolved questions in fungi and beyond. Journal ofEvolutionary Biology, 25, 1020–1038.

    Article  CAS  Google Scholar 

  • Boland, G. J., & Hall, R. (1994). Canadian journal of plant pathology index of plant hosts of Sclerotinia sclerotiorum index of plant hosts of Sclerotinia sclerotiomm. Canadian Journal of Plant Pathology, 16, 93–108.

    Article  Google Scholar 

  • Bruvo, R., Michiels, N. K., D’Souza, T. G., & Schulenburg, H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 13(7), 2101–2106.

    Article  CAS  PubMed  Google Scholar 

  • Carmona, M., & Sautua, F. (2017). La problemática de la resistencia de hongos a fungicidas. Causas y efectos en cultivos extensivos. Agronomía y ambiente, 37(1), 1–19.

    Google Scholar 

  • Chitrampalam, P., Inderbitzin, P., Maruthachalam, K., Wu, B. M., & Subbarao, K. V. (2013). The Sclerotinia sclerotiorum mating type locus (MAT) contains a 3.6-kb region that is inverted in every meiotic generation. PloS one, 8(2).

  • Chitrampalam, P., & Pryor, B. M. (2015). Characterization of mating type (MAT) alleles differentiated by a natural inversion in Sclerotinia minor. Plant Pathology, 64(4), 911–920.

    Article  CAS  Google Scholar 

  • Clarkson, J. P., Coventry, E., Kitchen, J., Carter, H. E., & Whipps, J. M. (2013). Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathology, 62(2), 309–324.

    Article  Google Scholar 

  • Clarkson, John P., Warmington, R. J., Walley, P. G., Denton-Giles, M., Barbetti, M. J., Brodal, G., & Nordskog, B. (2017). Population structure of Sclerotinia subartica and Sclerotinia sclerotiorum in England, Scotland and Norway. Frontiers in Microbiology, 8(APR).

  • Coppin, E., Debuchy, R., Arnaise, S., & Picard, M. (1997). Mating types and sexual development in filamentous ascomycetes. Microbiology and Molecular Biology Reviews, 61, 411–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cubeta, M. A., Cody, B. R., Kohli, Y., & Kohn, L. M. (1997). Clonality in Sclerotinia sclerotiorum on infected cabbage in eastern North Carolina, 1000–1004.

    Google Scholar 

  • Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2018). InfoStat versión 2018. Grupo InfoStat: FCA, Universidad Nacional de Córdoba, Argentina.

    Google Scholar 

  • Dunn, A. R., Kikkert, J. R., & Pethybridge, S. J. (2017). Genotypic characteristics in populations of Sclerotinia sclerotiorum from New York state, USA. Annals of Applied Biology, 170(2), 219–228.

    Article  Google Scholar 

  • Durman, S. B., Menéndez, A. B., & Godeas, A. M. (2003). Mycelial compatibility groups in Buenos Aires field populations of Sclerotinia sclerotiorum (Sclerotiniaceae). Australian Journal of Botany, 51(4), 421–427.

    Article  Google Scholar 

  • Earl, D. A., & vonHoldt, B. M. (2012). Structure Harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: A simulation study. Molecular Ecology, 14(8), 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131(2), 479–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.

    CAS  Google Scholar 

  • Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164(4), 1567–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, E. V., Breseguello, L., Augusto, M., Nasser, L. C. B., & Petrofeza, S. (2011). Microsatellite markers reveal genetic variation within Sclerotinia sclerotiorum populations in irrigated dry bean crops in Brazil. Journal of Phytopathology, 159(2), 94–99.

    Article  CAS  Google Scholar 

  • Grünwald, N. J., Goodwin, S. B., Milgroom, M. G., & Fry, W. E. (2003). Analysis of genotypic diversity data for populations of microorganisms. Phytopathology, 93(6), 738–746.

    Article  PubMed  Google Scholar 

  • Hedrick, P. W. (1987). Gametic disequilibrium measures: Proceed with caution. Genetics, 117, 331–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmati, R., Javan-Nikkhah, M., & Linde, C. C. (2009). Population genetic structure of Sclerotinia sclerotiorum on canola in Iran. European Journal of Plant Pathology, 125(4), 617–628.

    Article  Google Scholar 

  • Jombart, T. (2008). ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405.

    Article  CAS  PubMed  Google Scholar 

  • Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski, S. T. (2005). HP RARE: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5, 187–189.

    Article  CAS  Google Scholar 

  • Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr : An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamvar, Z. N., Amaradasa, B. S., Jhala, R., McCoy, S., Steadman, J. R., & Everhart, S. E. (2017). Population structure and phenotypic variation of Sclerotinia sclerotiorum from dry bean (Phaseolus vulgaris) in the United States. PeerJ, 5, e4152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamvar, Z. N., & Everhart, S. E. (2019). Something in the agar does not compute: On the discriminatory power of mycelial compatibility in Sclerotinia sclerotiorum. Tropical Plant Pathology, 44(1), 32–40.

    Article  Google Scholar 

  • Lehner, M. S., Paula Júnior, T. J., Hora Júnior, B. T., Teixeira, H., Vieira, R. F., Carneiro, J. E. S., & Mizubuti, E. S. G. (2015). Low genetic variability in Sclerotinia sclerotiorum populations from common bean fields in Minas Gerais state, Brazil, at regional, local and micro-scales. Plant Pathology, 64(4), 921–931.

    Article  Google Scholar 

  • Lehner, M. S., De Paula Júnior, T. J., Del Ponte, E. M., Mizubuti, E. S. G., & Pethybridge, S. J. (2017). Independently founded populations of Sclerotinia sclerotiorum from a tropical and a temperate region have similar genetic structure. PLoS One, 12(3), 1–14.

    Article  CAS  Google Scholar 

  • Lehner, M. S., & Mizubuti, E. S. G. (2017). Are Sclerotinia sclerotiorum populations from the tropics more variable than those from subtropical and temperate zones? Tropical Plant Pathology, 42(2), 61–69.

    Article  Google Scholar 

  • Lehner, M. D. S., Silva, R. A., Júnior, T. J. P., Carneiro, J. E. S., & Mizubuti, E. S. (2019). The population of Sclerotinia sclerotiorum affecting common bean in Brazil is structured by mycelial compatibility groups. Tropical Plant Pathology, 44(1), 41–52.

    Article  Google Scholar 

  • Litholdo Junior, C. G., & Gomes, E. (2011). Genetic diversity and mycelial compatibility groups of the plant-pathogenic fungus Sclerotinia sclerotiorum in Brazil. Genetics and Molecular Research, 10(2), 868–877.

    Article  CAS  PubMed  Google Scholar 

  • Malvárez, G., Carbone, I., Grünwald, N. J., Subbarao, K. V., Schafer, M., & Kohn, L. M. (2007). New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology, 97(4), 470–483.

    Article  PubMed  CAS  Google Scholar 

  • Mantel, N. (1967). Cancer research. Cancer Research, 27, 209–220.

    CAS  PubMed  Google Scholar 

  • Maynard-Smith, J., Smith, N. H., O'Rourke, M., Spratt, B. G. (1993). How clonal are bacteria? Proceedings of National Academy of Sciences of USA, 90,4384–4388.

    Google Scholar 

  • McDermott, J. M., & McDonald, B. A. (1993). Gene flow in plant Pathosystems. Annual Review of Phytopathology, 31(1), 353–373.

    Article  Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40(1), 349–379.

    Article  CAS  PubMed  Google Scholar 

  • MHyFP. (2016). Informes de cadenas de valor: Legumbres. Ministerio de Hacienda y Finanzas Publicas, 1, 1–35.

    Google Scholar 

  • Milgroom, M. G. (1995). Analysis of population structure in fungal plant pathogens. In J. F. Leslie & R. A. Frederiksen (Eds.), Disease analysis through genetics and biotechnology (pp. 213–229). Ames, IA: Iowa State University Press.

    Google Scholar 

  • Milgroom, M. G. (1996). Recombination and the multilocus structure of fungal populations. Annual Review of Phytopathology, 34, (1), 457–477.

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panullo, A., Kamvar, Z. N., Miorini, J., Steadman, J. R., & Everhart, S. E. (2018). Genetic variation and structure of Sclerotinia sclerotiorum populations from soybean in Brazil. Phytopathology Tropical Plant Pathology, 44(1), 53–64.

    Article  Google Scholar 

  • Pielou, E. C. (1975). Ecological diversity. John Wiley and Sons, New York, 165.

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, H. F., & Singh, S. P. (2013). Breeding common bean for resistance to white mold: A review. Crop Science, 53(5), 1832–1844.

    Article  Google Scholar 

  • Sexton, A. C., & Howlett, B. J. (2004). Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Current Genetics, 46(6), 357–365.

    Article  CAS  PubMed  Google Scholar 

  • Sexton, A. C., Whitten, A. R., & Howlett, B. J. (2006). Population structure of Sclerotinia sclerotiorum in an Australian canola field at flowering and stem-infection stages of the disease cycle. Genome, 49(11), 1408–1415.

    Article  PubMed  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. The mathematical theory of communication, 27(4), 117.

    Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Sirjusingh, C., & Kohn, L. M. (2001). Characterization of microsatellites in the fungal plant pathogen, Sclerotinia sclerotiorum. Molecular Ecology Notes, 1(4), 267–269.

    Article  CAS  Google Scholar 

  • Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, J.M., Smith, N.H., O'Rourke, M. & Spratt, B.G. (1993) How clonal are bacteria? Proceedings of National Academy of Sciences of USA, 90, 4384–4388.

  • Stoddart, J. A., & Taylor, J. F. (1988). Genotypic diversity: Estimation and prediction in samples. Genetics, 118(4), 705–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, J. W., Geiser, D. M., Burt, A., & Koufopanou, V. (1999). The evolutionary biology and population genetics underlying fungal strain typing. Clinical Microbiology Reviews, 12(1), 126–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizgarra, O., Espeche, C., & Ploper, L. D. (2016). Manual Técnico del Cultivo del Poroto para el Noroeste Argentino. Las Lajitas, Argentina: EEAOC Press.

    Google Scholar 

  • Wright, S. (1949). The genetical structure of populations. Annals of Eugenics, 15, 323–354.

    Article  Google Scholar 

  • Zhan, J., Pettway, R. E., & McDonald, B. A. (2003). The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genetics and Biology, 38(3), 286–297.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Abán, Taboada, Spedaletti and Maita are fellows of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Galván is CONICET researcher. The authors thank CONICET and Instituto Nacional de Tecnología Agropecuaria (INTA) for supporting this research. We gratefully acknowledge Atilio Castagnaro, Francisca Perera and Natalia Ovejero from EEAOC, Tucumán, Argentina for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Z. Galván.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest.

Human participants and/or animals

No human and/or animal participants were involved in this research.

Supplementary Information

Figure S1

Discriminate analysis of principal components (DAPC) to infer population substructure. A) Bayesian Inference Criterion (BIC) values versus number of clusters (K). B) Scatterplot of the first two principal components showing the differentiation between the two subpopulations by colours. (PDF 427 kb)

Table S1

Allelic diversity at nine microsatellite loci used to characterize S. sclerotiorum isolates from the main common bean fields of Argentina. (PDF 427 kb) (PDF 106 kb)

Table S2

Microsatellite profile of the 109 isolates of S. sclerotiorum studied. The multilocus haplotype (MLH), Micelial compatibility group (MCG) and genetic cluster (GC) inferred by Structure for each isolate, are indicated. (PDF 106 kb) (PDF 163 kb)

Table S3

Allelic richness (A) and private allelic richness (Ap) estimated using rarefaction method at seven microsatellite loci in Sclerotinia sclerotiorum locations from northwestern Argentina and genetic clusters inferred from Structure analysis. (PDF 163 kb) (PDF 22 kb)

Table S4

Pairwise linkage disequilibrium between seven microsatellite loci used to characterize all isolates of S. sclerotiorum after clone correction. IA (below diagonal) and \( {\overline{r}}_d \) (above diagonal). (PDF 22 kb) (PDF 311 kb)

Table S5

Microsatellite haplotype (MLH) designations and frequencies associated with mycelial compatibility group (MCG) of Sclerotinia sclerotiorum isolates from common bean fields in northwestern Argentina. (PDF 311 kb) (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abán, C.L., Taboada, G., Spedaletti, Y. et al. Population structure of the fungus Sclerotinia sclerotiorum in common bean fields of Argentina. Eur J Plant Pathol 160, 841–853 (2021). https://doi.org/10.1007/s10658-021-02288-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02288-7

Keywords

Navigation