Skip to main content
Log in

Quantitative PCR for detection and quantification of Phytophthora cactorum in the cultivation of strawberry

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In this study, we report on the development of two quantitative PCR assays for the detection and quantification of the soilborne plant pathogen Phytophthora cactorum causing root and crown rot of strawberry. The assays rely on the use of SYBR Green I chemistry and use the internal transcribed spacer region 2 (ITS2) and the Ras-related protein gene Ypt1 as detection markers. An extensive list of Phytophthora isolates was included in the study to evaluate assay specificity. High specificity was obtained when Ypt1 was used as detection marker, with cross-reactions only occurring with the closest relatives of P. cactorum, including P. hedraiandra, P. idaei and P. pseudotsugae. In contrast, the ITS-based assay was less specific, resulting in a larger number of cross-reactions (eight species when tested at 10 pg DNA). In sensitivity tests, P. cactorum DNA was detected down to 10 fg using the ITS-based assay, while the limit of detection (LOD) for the Ypt1-based assay was 1 pg DNA, irrespective of the presence of background DNA from strawberry or soil. When strawberry, growth substrate and soil samples were spiked with a 10-fold dilution series of P. cactorum zoospores, the LOD for the ITS-based assay was 10 zoospores g−1 plant material, growth substrate or soil. The limit of quantification (LOQ) of the assay was 109 zoospores g−1 plant material, 15.8 zoospores g−1 growth substrate, and 106 zoospores g−1 soil. For the Ypt1-based assay, the LOD and LOQ values were 1000 and 5910 zoospores g−1 plant material, 1000 and 1818 zoospores g−1 growth substrate, and 1000 and 3823 zoospores g−1 soil, respectively. In terms of detection, analysis of field samples suggested that the Ypt1-based assay almost performed equally well compared to the ITS-based assay, especially for plant and growth substrate samples. Further, our results showed that both qPCR assays outperformed classical plating, illustrating their power to be used for diagnostic purposes. Interestingly, P. cactorum was also detected in soil and growth substrate samples from areas with no symptoms, suggesting that the assays can also aid in early pathogen detection before the disease manifests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Akino, S., Takemoto, D., & Hosaka, K. (2014). Phytophthora infestans: A review of past and current studies on potato late blight. Journal of General Plant Pathology, 80, 24–37.

    Article  CAS  Google Scholar 

  • Barboza, E. A., Fonseca, M. E. N., Boiteux, L. S., & Reis, A. (2017). First worldwide report of a strawberry fruit rot disease caused by Phytophthora capsici isolates. Plant Disease, 101, 259–260.

    Article  Google Scholar 

  • Blair, J. E., Coffey, M. D., Park, S. Y., Geiser, D. M., & Kang, S. (2008). A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genetics and Biology, 45, 266–277.

    Article  CAS  PubMed  Google Scholar 

  • Bonants, P. J. M., Hagenaar-de Weerdt, M., Man In ‘t Veld, W. A., & Baayen, R. P. (2000). Molecular characterization of natural hybrids of Phytophthora nicotianae and P. cactorum. Phytopathology, 90, 867–874.

    Article  CAS  PubMed  Google Scholar 

  • Capote, N., Pastrana, A. M., Aguado, A., & Sanchez-Torres, P. (2012). Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In Dr. C. J. Cumagun (Ed.), Plant pathology (pp. 151–202). London: IntechOpen.

  • Catal, M., Erler, F., Fulbright, D. W., & Adams, G. C. (2013). Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. European Journal of Plant Pathology, 137, 859–869.

    Article  CAS  Google Scholar 

  • Chen, Y., & Roxby, R. (1996). Characterization of a Phytophthora infestans gene involved in vesicle transport. Gene, 181, 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Chimento, A., Cacciola, S. O., & Garbelotto, M. (2011). Detection of mRNA by reverse-transcription PCR as an indicator of viability in Phytophthora ramorum. Forest Pathology, 42, 14–21.

    Article  Google Scholar 

  • Cooke, D. E. L., Schena, L., & Cacciola, S. O. (2007). Tools to detect, identify and monitor Phytophthora species in natural ecosystems. Journal of Plant Pathology, 89, 13–28.

    CAS  Google Scholar 

  • Davidson, J. M., Werres, S., Garbelotto, M., Hansen, E. M., & Rizzo, D. M. (2003). Sudden oak death and associated diseases caused by Phytophthora ramorum. Plant Health Progress, 4, 12. https://doi.org/10.1094/PHP-2003-0707-01-DG.

    Article  Google Scholar 

  • Dolezel, J., Bartos, J., Voglmayr, H., & Greilhuber, J. (2003). Nuclear DNA content and genome size of trout and human. Cytometry. Part A: The Journal of the International Society for Analytical Cytology, 51, 127–128.

    CAS  Google Scholar 

  • Ellis, M. A., & Grove, G. G. (1983). Leather rot in Ohio strawberries. Plant Disease, 67, 549.

    Article  Google Scholar 

  • Engelberg, J., Duong, T. A., & van den Berg, N. (2013). Development of a nested quantitative real-time PCR for detecting Phytophthora cinnamomi in Persea americana rootstocks. Plant Disease, 97, 1012–1017.

    Article  CAS  Google Scholar 

  • Englander, L., & Roth, L. F. (1979). Interaction of light and sterol on sporangium and chlamydospore production by Phytophthora lateralis. Phytopathology, 70, 650–654.

    Article  Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora Diseases Worldwide. St. Paul, MN: APS Press.

    Google Scholar 

  • Eshraghi, L., Aryamanesh, N., Anderson, J. P., Shearer, B., McComb, J. A., Hardy, G. E. S. J., & O’Brien, P. A. (2011). A quantitative PCR assay for accurate in planta quantification of the necrotrophic pathogen Phytophthora cinnamomi. European Journal of Plant Pathology, 131, 419–430.

    Article  CAS  Google Scholar 

  • Faedda, R., Cacciola, S. O., Pane, A., Szigethy, A., Bakonyi, J., Man In’t Veld, W. A., et al. (2013). Phytophthora × pelgrandis causes root and collar rot of Lavandula stoechas in Italy. Plant Disease, 97, 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, A. J., & Jeffers, S. N. (1999). Detecting multiple species of Phytophthora in container mixes from ornamental crop nurseries. Plant Disease, 83, 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Fittipaldi, M., Nocker, A., & Codony, F. (2012). Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. Journal of Microbiological Methods, 91, 276–289.

    Article  CAS  PubMed  Google Scholar 

  • Forootan, A., Sjöback, R., Björkman, J., Sjögreen, B., Linz, L., & Kubista, M. (2017). Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomolecular Detection and Quantification, 12, 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French-Monar, R. D., Jones, J. B., Ozores-Hampton, M., & Roberts, P. D. (2007). Survival of inoculum of Phytophthora capsici in soil through time under different soil treatments. Plant Disease, 91, 593–598.

    Article  PubMed  Google Scholar 

  • Garrido, C., Carbú, M., Fernández-Acero, F. J., González-Rodríguez, V. E., & Cantoral, J. M. (2011). New insights in the study of strawberry fungal pathogens. Genes, Genomes and Genomics, 5, 24–39.

    Google Scholar 

  • Garrido, C., González-Rodríguez, V. E., Carbú, M., Husaini, A. M., & Cantoral, J. M. (2016). Fungal diseases of strawberry and their diagnosis. In A. M. Husaini & D. Neri (Eds.), Strawberry: Growth, development and diseases (pp. 157–184). Boston: CAB International.

    Chapter  Google Scholar 

  • Harris, D. C. (1986). Methods for preparing, estimating and diluting suspensions of Phytophthora cactorum zoospores. Transactions of the British Mycological Society, 86, 482–486.

    Article  Google Scholar 

  • Heise, J., Nega, M., Alawi, M., & Wagner, D. (2016). Propidium monoazide treatment to distinguish between live and dead methanogens in pure cultures and environmental samples. Journal of Microbiological Methods, 121, 11–23.

    Article  CAS  PubMed  Google Scholar 

  • Judelson, H. S., & Blanco, F. A. (2005). The spores of Phytophthora: Weapons of the plant destroyer. Nature Reviews Microbiology, 3, 47–58.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M., Li, B., Jiang, Y., Weng, Q., & Chen, Q. (2017). Evaluation of different PCR-based assays and LAMP method for rapid detection of Phytophthora infestans by targeting the Ypt1 gene. Frontiers in Microbiology, 8, 1920.

    Article  PubMed  PubMed Central  Google Scholar 

  • König, S., Schwenkbier, L., Pollok, S., Riedel, M., Wagner, S., Popp, J., Weber, K., & Werres, S. (2015). Potential of Ypt1 and ITS gene regions for the detection of Phytophthora species in a lab-on-a-chip DNA hybridization array. Plant Pathology, 64, 1176–1189.

    Article  CAS  Google Scholar 

  • Kroon, L. P. N. M., Bakker, F. T., van den Bosch, G. B. M., Bonants, P. J. M., & Flier, W. G. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41, 766–782.

    Article  CAS  PubMed  Google Scholar 

  • Kunadiya, M. B., Dunstan, W. D., White, D., Hardy, G. E. S. J., Grigg, A. H., & Burgess, T. I. (2019). A qPCR assay for the detection of Phytophthora cinnamomi including an mRNA protocol designed to establish propagule viability in environmental samples. Plant Disease, 103, 2443–2450.

    Article  CAS  PubMed  Google Scholar 

  • Lees, A. K., Sullivan, L., Lynott, J. S., & Cullen, D. W. (2012). Development of a quantitative real-time PCR assay for Phytophthora infestans and its applicability to leaf, tuber and soil samples. Plant Pathology, 61, 867–876.

    Article  CAS  Google Scholar 

  • Li, M., Inada, M., Watanabe, H., Suga, H., & Kageyama, K. (2013). Simultaneous detection and quantification of Phytophthora nicotianae and P. cactorum, and distribution analyses in strawberry greenhouses by duplex real-time PCR. Microbes and Environments, 28, 195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lievens, B., Brouwer, M., Vanachter, A. C. R. C., Lévesque, C. A., Cammue, B. P. A., & Thomma, B. P. H. J. (2003). Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiology Letters, 223, 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Lievens, B., Grauwet, T. J. M. A., Cammue, B. P. A., & Thomma, B. P. H. J. (2005). Recent developments in diagnostics of plant pathogens: A review. In S. G. Pandalai (Ed.), Recent research developments in microbiology (pp. 57–79). Kerala, India.

  • Man In’t Veld, W. A., Rosendahl, K. C. H. M., & Hong, C. (2012). Phytophthora x serendipita sp. nov. and P. x pelgrandis, two destructive pathogens generated by natural hybridization. Mycologia, 104, 1390–1396.

    Article  Google Scholar 

  • Martin, F. N., & Tooley, P. W. (2003). Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia, 95, 269–284.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F., Abad, Z. G., Balci, Y., & Ivors, K. (2012). Identification and detection of Phytophthora: Reviewing our progress, identifying our needs. Plant Disease, 96, 1080–1103.

    Article  PubMed  Google Scholar 

  • Mauvisseau, Q., Burian, A., Gibson, C., Brys, R., Ramsey, A., & Sweet, M. (2019). Influence of accuracy, repeatability and detection probability in the reliability of species-specific eDNA based approaches. Scientific Reports, 9, 580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McIntosh, D. L. (1977). Phytophthora cactorum propagule density levels in orchard soil. The Plant Disease Reporter, 61, 528–532.

    Google Scholar 

  • Nowakowska, J. A., Malewski, T., Tereba, A., & Oszako, T. (2017). Rapid diagnosis of pathogenic Phytophthora species in soil by real-time PCR. Forest Pathology. https://doi.org/10.1111/efp.12303.

  • O’Brien, P. A., Williams, N., & Hardy, G. E. S. (2009). Detecting Phytophthora. Critical Reviews in Microbiology, 35, 169–181.

    Article  PubMed  CAS  Google Scholar 

  • Pánek, M., Fér, T., Mráček, J., & Tomšovský, M. (2016). Evolutionary relationships within the Phytophthora cactorum species complex in Europe. Fungal Biology, 120, 836–851.

    Article  PubMed  Google Scholar 

  • Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., & Nannipieri, P. (2009). Extracellular DNA in soil and sediment: Fate and ecological relevance. Biology and Fertility of Soils, 45, 219–235.

    Article  CAS  Google Scholar 

  • Porras, M., Barrau, C., Arroyo, F. T., Santos, B., Blanco, C., & Romero, F. (2007). Reduction of Phytophthora cactorum in strawberry fields by Trichoderma spp. and soil solarization. Plant Disease, 91, 142–146.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.r-project.org/index.html.

  • Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Misener & S. A. Krawetz (Eds.), Bioinformatics methods and protocols (pp. 365–386). Totawa, NJ: Humana Press.

    Google Scholar 

  • Schena, L., & Cooke, D. E. L. (2006). Assessing the potential of regions of the nuclear and mitochondrial genome to develop a “molecular tool box” for the detection and characterization of Phytophthora species. Journal of Microbiological Methods, 67, 70–85.

    Article  CAS  PubMed  Google Scholar 

  • Schena, L., Nigro, F., Ippolito, A., & Gallitelli, D. (2004). Real-time quantitative PCR: A new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 110, 893–908.

    Article  CAS  Google Scholar 

  • Schena, L., Duncan, J. M., & Cooke, D. E. L. (2008). Development and application of a PCR-based ‘molecular tool box’ for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathology, 57, 64–75.

    CAS  Google Scholar 

  • Schena, L., Li Destri Nicosia, M. G., Sanzani, S. M., Faedda, R., Ippolito, A., & Cacciola, S. O. (2013). Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. Journal of Plant Pathology, 95, 7–24.

    Google Scholar 

  • Scheu, P. M., Berghof, K., & Stahl, U. (1998). Detection of pathogenic and spoilage micro-organisms in food with the polymerase chain reaction. Food Microbiology, 15, 13–31.

    Article  Google Scholar 

  • Stensvand, A., Herrero, M. L., & Talgø, V. (1999). Crown rot caused by Phytophthora cactorum in Norwegian strawberry production. EPPO Bulletin, 29, 255–158.

    Article  Google Scholar 

  • Storts, D. R. (2014). Alternative probe-based detection systems in quantitative PCR. The Journal of Molecular Diagnostics, 16, 614.

    Article  CAS  Google Scholar 

  • Tajadini, M., Panjehpour, M., & Javanmard, S. H. (2014). Comparison of SYBR Green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Advanced Biomedical Research, 3, 85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, A. O., Malin, C., Knapp, B. A., & Illmer, P. (2008). Removal of free extracellular DNA from environmental samples by ethidium monoazide and propidium monoazide. Applied and Environmental Microbiology, 74, 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Eds.), PCR Protocols. A guide to methods and applications. (pp. 315–222). New York: Academic Press, Inc.

  • Yang, X., Tyler, B. M., & Hong, C. (2017). An expanded phylogeny for the genus Phytophthora. IMA Fungus, 8, 355–384.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, M., Duan, S., Mei, X., Huang, H., Chen, W., Liu, Y., Guo, C., Yang, T., Wei, W., Liu, X., He, X., Dong, Y., & Zhu, S. (2018). The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Scientific Reports, 8, 6534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank VLAIO (Flanders Innovation and Entrepreneurship) for financial support (HBC.2017.0833). Additionally, we are grateful to our colleagues W. Man in ‘t Veld, A. Numansen, L. Kroon, W. Flier, F. Govers, D. Cooke, K. Hughes, S. Werres, J. Bakyoni, S. Klemsdal, E. Hansen and M. Coffey for giving us access their Phytophthora collections. Further, we would like to thank all growers providing samples for this research.

Funding

This study was funded by VLAIO (Flanders Innovation and Entrepreneurship), project HBC.2017.0833.

Author information

Authors and Affiliations

Authors

Contributions

EV, HR and BL conceived the ideas and designed methodology. EV, AC, DB and JF collected the data. PM, WVH, HR and BL contributed to infrastructure, equipment, and reagents. PB provided DNA samples. EV, HR and BL analyzed the data. EV and BL led the writing of the manuscript. All authors contributed critically to the drafts of this manuscript and gave final approval for publication.

Corresponding author

Correspondence to B. Lievens.

Ethics declarations

Ethics approval

All authors gave approval for submission of this manuscript. The manuscript has been prepared following principles of ethical and professional conduct. The research did not involve human participants or animals. Therefore, neither statements concerning informed consent nor welfare of animals is applicable.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Consent for publication was obtained from all co-authors.

Conflicts of interest/competing interests

The authors declare that no conflicts of interest exist.

Additional information

Rediers, H. and Lievens, B. are shared last co-author

Supplementary Information

ESM 1

(DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdecchia, E., Ceustermans, A., Baets, D. et al. Quantitative PCR for detection and quantification of Phytophthora cactorum in the cultivation of strawberry. Eur J Plant Pathol 160, 867–882 (2021). https://doi.org/10.1007/s10658-021-02290-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02290-z

Keywords

Navigation