Skip to main content
Log in

Effect of Final Electromagnetic Stirring on Flow, Solidification, and Solute Transport in Continuous Casting Bloom

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The flow, solidification, and solute transport behaviors in the 380 × 280 mm2 bloom center under the effect of final electromagnetic stirring (F-EMS) were investigated using a mathematical model. The results of nail shooting tests and infrared carbon-sulfur analyses are in good agreement with the simulated solidification and carbon concentration results. When F-EMS was installed 13.6 m below the meniscus with a frequency of 8.0 Hz, the maximum tangential velocity at the solidification front increased from 0.013 m/s to 0.023 m/s, and the liquid fraction at the computational outlet decreased from 0.7827 to 0.7256 as the current intensity increased from 300 A to 600 A. For each 100 A increase in the current intensity, the temperature of the mushy steel in the bloom center decreased by an additional 2.4 K. When the current intensity was maintained between 300 A and 400 A, the negative segregation band in the newly solidified shell was eliminated, the uniformity of the carbon distribution around the bloom center was enhanced, and the centerline segregation was noticeably improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.O. El-Bealy, Ironmak. Steelmak. 40, 559. (2013).

    Article  Google Scholar 

  2. A. Ludwig, M. Wu, and A. Kharicha, Metall. Mater. Trans. A 46A, 4854. (2015).

    Article  Google Scholar 

  3. C. Wu, Q. Wang, D. Li, X. Zhu, B. Jin, L. Wang, and H. Lei, J. Mater. Res. Technol. 9, 5630. (2020).

    Article  Google Scholar 

  4. C. Xiao, J. Zhang, Y. Luo, X. Wei, L. Wu, and S. Wang, J. Iron Steel Res. Int. 20, 13. (2013).

    Article  Google Scholar 

  5. C. Ji, C. Wu, and M. Zhu, JOM 68, 3107. (2016).

    Article  Google Scholar 

  6. D. Jiang, R. Wang, Q. Zhang, Z. Zhang, T. Tu, J. Wang, and Z. Ren, J. Iron Steel Res. Int. 27, 141. (2020).

    Article  Google Scholar 

  7. F.P. Quinelato, W.J.L. Garção, K.G. Paradela, R.C. Sales, and A.F. Ferreira, Mater. Res. 23, e20200023. (2020).

    Article  Google Scholar 

  8. Q. Fang, H. Ni, B. Wang, H. Zhang, and F. Ye, Metals 7, 72. (2020).

    Article  Google Scholar 

  9. Q. Fang, H. Zhang, J. Wang, C. Liu, and H. Ni, Metall. Mater. Trans. B 51B, 1705. (2020).

    Article  Google Scholar 

  10. S. Luo, F. Piao, D. Jiang, and M. Zhu, J. Iron Steel Res. Int. 21, 51. (2014).

    Article  Google Scholar 

  11. Y. Xu, R. Xu, Z. Fan, C. Li, and A. Deng, Int. J. Min. Met. Mater. 23, 534. (2016).

    Article  Google Scholar 

  12. B. Ren, D. Chen, W. Xia, H. Wang, and Z. Han, Metals 8, 903. (2018).

    Article  Google Scholar 

  13. W. Su, D. Jiang, S. Luo, and M. Zhu, J. Northeast. Univ. 34, 673. (2013).

    Google Scholar 

  14. D. Jiang, and M. Zhu, Steel Res. Int. 86, 993. (2015).

    Article  Google Scholar 

  15. W. Jiang, M. Long, T. Liu, D. Chen, H. Chen, J. Cao, H. Fan, S. Yu, and H. Duan, JOM 70, 2059. (2018).

    Article  Google Scholar 

  16. R. Wang, Y. Bao, Y. Li, and H. An, Int. J. Min. Met. Mater. 23, 1150. (2016).

    Article  Google Scholar 

  17. H. Sun, L. Li, D. Ye, and X. Wu, Metall. Mater. Trans. B 49B, 1909. (2018).

    Article  Google Scholar 

  18. S. Li, Z. Han, and J. Zhang, JOM 72, 4117. (2020).

    Article  Google Scholar 

  19. H. Sun, L. Li, X. Cheng, W. Qiu, Z. Liu, and L. Zeng, Ironmak. Steelmak. 42, 439. (2015).

    Article  Google Scholar 

  20. Z. Zhao, H. Ni, H. Zhang, G. Chen, W. Yi, and J. Hong, Ironmak. Steelmak. 41, 539. (2014).

    Article  Google Scholar 

  21. ANSYS Inc., ANSYS Fluent 18.0, Theory Guide (2017).

  22. S.M. Cho, S.H. Kim, and B.G. Thomas, ISIJ Int. 54, 845. (2014).

    Article  Google Scholar 

  23. H. Sun and J. Zhang, Metall. Mater. Trans. B 45B, 1133. (2014).

    Article  Google Scholar 

  24. D.R. Poirier, Metall. Mater. Trans. B 18B, 245. (1987).

    Article  Google Scholar 

  25. F.C. Chang, J.R. Hull, and L. Beitelman, Metall. Mater. Trans. B 35B, 1129. (2004).

    Article  Google Scholar 

  26. L.B. Trindade, A.C.F. Vilela, A.F.F. Filho, M.T.M.B. Vilhena, and R.B. Soares, IEEE Trans. Magn. 38, 3658. (2002).

    Article  Google Scholar 

  27. K.Y.M. Lai, M. Salcudean, S. Tanaka, and R.I.L. Guthrie, Metall. Mater. Trans. B 17B, 449. (1986).

    Article  Google Scholar 

  28. Q. Fang, H. Ni, H. Zhang, B. Wang, and C. Liu, Metals 7, 483. (2017).

    Article  Google Scholar 

  29. M.J. Long, D.F. Chen, Q.X. Wang, D.H. Luo, Z.W. Han, Q. Liu, and W.X. Gao, Ironmak. Steelmak. 39, 370. (2012).

    Article  Google Scholar 

  30. X.D. Wang, B.F. Wang, J.G. Cao, and J. Li, Iron Steel 46, 40. (2011).

    Google Scholar 

  31. Q. Guo, B. Jin, J. Luo, C. Ni, X. Wan, and X. Liao, J. Iron Steel Res. Int. 19, 892. (2012).

    Article  Google Scholar 

  32. J.C. Li, J.Z. Cui, B.F. Wang, and Y. Ma, Heat Treat. Met. 32, 69. (2007).

    Google Scholar 

  33. X. Wang, B. Wang, J. Cao, and J. Li, Foundry Technol. 32, 857. (2011).

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support provided by the National Natural Science Foundation of China (51774217 and 52004191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Q., Zhang, H., Wang, J. et al. Effect of Final Electromagnetic Stirring on Flow, Solidification, and Solute Transport in Continuous Casting Bloom. JOM 73, 2698–2708 (2021). https://doi.org/10.1007/s11837-021-04796-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04796-7

Navigation