Skip to main content
Log in

Identifying the Vaccinia Virus with the Use of a Nanowire Silicon-on-Insulator Biosensor

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The results of identifying the vaccinia virus with the use of nanowire biosensors manufactured on the basis of silicon-on-insulator (SOI) films were presented. In our experiments, the vaccinia virus, the LIVP strain from the collection of the State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, and the rabbit blood serum containing specific polyclonal antibodies to the vaccinia virus were used. As shown by our studies, the polyvalent blood serum was electrically neutral at the sensor surface–viral suspension phase interface, the vaccinia virus was positively charged, and polyvalent blood serum–vaccinia virus vaccine complexes had a negative effective charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. This Is What Happened: Program of Global Eradication of Smallpox in Memoirs of Participants, Ed. by S. S. Marennikova (TsERIS, Novosibirsk, 2011).

  2. G. A. Shchelkunova and S. N. Shchelkunov, ‘‘40 years without smallpox,’’ Acta Nat. 9 (4) 4–12 (2017). https://doi.org/10.32607/20758251-2017-9-4-4-12

    Article  Google Scholar 

  3. S. N. Shchelkunov, ‘‘Is re-emerging of smallpox possible?,’’ Mol. Med., No. 4, 36–41 (2011).

  4. A. N. Sergeev, A. S. Safatov, V. M. Generalov, et al., ‘‘Highly patogenic bird influenza in Russian and abroad: control and prevention strategy,’’ Probl. Osobo Opasnykh Infektsii, No. 1, 5–11 (2006).

    Google Scholar 

  5. O. V. Naumova, B. I. Fomin, D. A. Nasimov, N. V. Dudchenko, S. F. Devyatova, E. D. Zhanaev, V. P. Popov, A. V. Latyshev, A. L. Aseev, Yu. D. Ivanov, and A. I. Archakov, ‘‘SOI nanowires as sensors for charge detection,’’ Semicond. Sci. Technol. 25, 055004 (2010). https://doi.org/10.1088/0268-1242/25/5/055004

    Article  ADS  Google Scholar 

  6. O. V. Naumova and B. I. Fomin, ‘‘Optimization of the response of nanowire biosensors,’’ Optoelectron., Instrum. Data Process. 52, 434–437 (2016). https://doi.org/10.3103/S8756699016050034

    Article  Google Scholar 

  7. Yu. D. Ivanov, K. A. Malsagova, T. O. Pleshakova, I. D. Shumov, A. L. Kaysheva, V. P. Popov, O. V. Naumova, B. I. Fomin, D. A. Nasimov, A. V. Latyshev, A. L. Aseev, V. Yu. Tatur, N. D. Ivanova, G. M. Konovalova, and A. I. Archakov, ‘‘Registration of the protein in the serum with a field-effect nanotransistor biosensor,’’ Pathol. Physiol. Exper. Ther. 60 (1) 94–98 (2016).

    Google Scholar 

  8. V. M. Generalov, O. V. Naumova, B. I. Fomin, S. A. P’yankov, I. V. Khlistun, A. S. Safatov, B. N. Zaitsev, E. G. Zaitseva, and A. L. Aseev, ‘‘Detection of ebola virus VP40 protein using a nanowire SOI biosensor,’’ Optoelectron., Instrum. Data Process. 55, 618–622 (2019). https://doi.org/10.3103/S875669901906013X

    Article  ADS  Google Scholar 

  9. Fundamental Virology, Ed. by B. N. Fields and D. M. Knipe (Raven Press, New York, 1989).

    Google Scholar 

  10. M. S. Makowski and A. Ivanisevic, ‘‘Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors,’’ Small 7, 1863–1875 (2011). https://doi.org/10.1002/smll.201100211

    Article  Google Scholar 

  11. F. Yang and G.-J. Zhang, ‘‘Silicon nanowire-transistor biosensor for study of molecule-molecule interactions,’’ Rev. Anal. Chem. 33, 95–110 (2014). https://doi.org/10.1515/revac-2014-0010

    Article  Google Scholar 

  12. K. A. Malsagova, Yu. D. Ivanov, T. O. Pleshakova, A. F. Kozlov, N. V. Krohin, A. L. Kaysheva, I. D. Shumov, V. P. Popov, O. V. Naumova, B. I. Fomin, and D. A. Nasimov, ‘‘SOI-nanowire biosensor for the detection of D-NFAT 1 protein,’’ Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem. 8, 220–225 (2014). https://doi.org/10.1134/S199075081403010X

    Article  Google Scholar 

  13. J. Park, H. H. Nguyen, A. Woubit, and M. Kim, ‘‘Applications of field-effect transistor (FET)-type biosensors,’’ Appl. Sci. Converg. Technol. 23, 61–71 (2014). https://doi.org/10.5757/ASCT.2014.23.2.61

    Article  Google Scholar 

  14. P. Cherpillod, M. Schibler, G. Vieille, S. Cordey, A. Mamin, P. Vetter, and L. Kaiser, ‘‘Ebola virus disease diagnosis by real-time RT-PCR: A comparative study of 11 different procedures,’’ J. Clin. Virol. 77. P. 9–14 (2016). https://doi.org/10.1016/j.jcv.2016.01.017

    Article  Google Scholar 

  15. R. A. Maksyutov, ‘‘Complex approach to species-specific detection of vaccinia virus,’’ Probl. Osobo Opasnykh Infektsii, No. 4, 60–63 (2016). https://doi.org/10.21055/0370-1069-2016-4-60-63

  16. A. G. Poltavchenko, A. V. Ersh, O. S. Taranov, S. N. Yakubitskiy, and P. V. Filatov, ‘‘Rapid immunochemical method for the detection of orthopoxviruses (Orthopoxvirus, Chordopoxvirinae, Poxviridae),’’ Probl. Virol. 64, 291–297 (2019). https://doi.org/10.36233/0507-4088-2019-64-6-291-297

    Article  Google Scholar 

  17. K.-I Chen, B.-R. Li, and Y.-T. Chen, ‘‘Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,’’ Nano Today 6, 131–154 (2011). https://doi.org/10.1016/j.nantod.2011.02.001

    Article  Google Scholar 

  18. GOST R (State Standard) 54500.3-2011: Uncertainty of Measurement. Part 3. Guide to the Expression of Uncertainty in Measurement, 2011.

Download references

ACKNOWLEDGMENTS

The authors are grateful to D. V. Shcheglov for the organization support of this study and O. S. Taranov for the granted electron photos of vaccinia virus.

Funding

The preparation of samples was carried out within state task of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. The manufacturing of sensors and the indication of viruses were carried out in the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences under support from the Russian Foundation for Basic Research (grant no. 18-29-02091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Generalov.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Generalov, V.M., Naumova, O.V., P’yankov, S.A. et al. Identifying the Vaccinia Virus with the Use of a Nanowire Silicon-on-Insulator Biosensor. Optoelectron.Instrument.Proc. 57, 37–43 (2021). https://doi.org/10.3103/S8756699021010040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021010040

Keywords:

Navigation