Skip to main content
Log in

Unit Cell Parameter and Density Calculations for Sm1 – xRxF2 + x, Eu1 – xRxF2 + x, and Yb1 – xRxF2 + x (R Is a Rare-Earth Element) Crystals

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Unit cell parameters acal(x) and X-ray densities ρX(x) are calculated in terms of a model that accounts for ionic bonding, additivity of properties, and dimensional factor upon aliovalent substitutions for 45 new nonstoichiometric phases Sm1 − xRxF2 + x, Eu1 − xRxF2 + x and Yb1 − xRxF2 + x (R = La−Lu, Y) based on SmF2, EuF2, and YbF2 fluorite matrices (the fluorite CaF2 type). A comparison of the calculated unit cell parameters acal(x) and the experimental a(x) values available in the literature for these phases shows satisfactory match. Concentration-dependent relationships acal(x) and ρX(x) can be used for monitoring the composition of melt-grown Sm1 − xRxF2 + x, Eu1 − xRxF2 + x, and Yb1 − xRxF2 + x crystals in studies of their defect structures and fundamental properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. B. P. Sobolev, The Rare Earth Trifluorides (Moscow Institute of Crystallography and Institut d’Estudis Catalans, Barcelona, 2000–2001).

  2. I. I. Buchinskaya and P. P. Fedorov, Uspekhi Khim. Nauk 73, 404 (2004).

    Google Scholar 

  3. N. I. Sorokin, E. A. Krivandina, and Z. I. Zhmurova, Crystallogr. Rep. 58, 948 (2013). https://doi.org/10.1134/S1063774513060217

    Article  CAS  Google Scholar 

  4. P. P. Fedorov and B. P. Sobolev, Sov. Phys. Crystallogr. 37, 651 (1992).

    Google Scholar 

  5. B. P. Sobolev and P. P. Fedorov, J. Less-Common Met. 60, 33 (1978).

    Article  CAS  Google Scholar 

  6. B. P. Sobolev and K. B. Seiranian, J. Solid State Chem. 39, 337 (1981).

    Article  CAS  Google Scholar 

  7. B. P. Sobolev and N. L. Tkachenko, J. Less-Common Met. 85, 155 (1982).

    Article  CAS  Google Scholar 

  8. N. I. Sorokin, Kristallografiya 35, 775 (1990).

    CAS  Google Scholar 

  9. P. P. Fedorov, V. B. Aleksandrov, O. S. Bondareva, et al., Crystallogr. Rep. 46, 239 (2001). https://doi.org/10.1134/1.1358401

    Article  Google Scholar 

  10. I. I. Buchinskaya, D. N. Karimov, A. G. Ivanova, et al., Crystallogr. Rep. 63, 774 (2018). https://doi.org/10.1134/S1063774518050073

    Article  CAS  Google Scholar 

  11. A. P. Ivanenko, N. M. Kompanichenko, A. A. Omelchuk, et al., Russ. J. Inorg. Chem. 55, 841 (2010). https://doi.org/10.1134/S0036023610060045

    Article  CAS  Google Scholar 

  12. A. S. Vinogradova-Zhabrova, L. D. Finkel’shtein, V. G. Bamburov, et al., Izv. AN SSSR. Neorg. Mater. 26, 389 (1990).

    CAS  Google Scholar 

  13. O. Greis, J. Solid State Chem. 24, 227 (1978).

    Article  CAS  Google Scholar 

  14. O. Greis, Z. Anorg. Allg. Chem. 441, 39 (1978).

    Article  CAS  Google Scholar 

  15. O. Greis, Z. Anorg. Allg. Chem. 430, 175 (1977).

    Article  CAS  Google Scholar 

  16. E. Banks and M. Nemiroff, Mater. Res. Bull. 9, 965 (1974).

    Article  CAS  Google Scholar 

  17. B. Tanguy, J. Portier, M. Vlasse, and M. Powchard, Bull. Soc. Chim. Fr. 3, 946 (1972).

    Google Scholar 

  18. J. J. Stezowski and H. A. Eick, Inorg. Chem. 9, 1102 (1970).

    Article  CAS  Google Scholar 

  19. E. Catalano, R. G. Bedford, V. G. Silveira, and H. H. Wickmann, Phys. Chem. Solids 30, 1613 (1969).

    Article  CAS  Google Scholar 

  20. T. Petzel and Th. Ahnen, Thermochim. Acta 90, 61 (1985).

    Article  CAS  Google Scholar 

  21. B. P. Sobolev, N. I. Sorokin, and N. B. Bolotina, Photonic & Electronic Properties of Fluoride Materials, Ed. by A. Tressaud and K. Poeppelmeier (Elsevier, Amsterdam, 2016).

    Google Scholar 

  22. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52, 842 (2007). https://doi.org/10.1134/S1063774507050148

    Article  CAS  Google Scholar 

  23. B. P. Sobolev, A. M. Golubev, and P. Herrero, Crystallogr. Rep. 48, 141 (2003). https://doi.org/10.1134/1.1541755

    Article  CAS  Google Scholar 

  24. Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors, Ed. by B. P. Sobolev (Institut d’Estudis Catalans, Barcelona, 1994).

    Google Scholar 

  25. E. A. Mironov, O. V. Palashov, and D. N. Karimov, Scr. Mater. 162, 54 (2019). https://doi.org/10.1016/j.scriptamat.2018.10.039

    Article  CAS  Google Scholar 

  26. E. A. Mironov, M. R. Volkov, O. V. Palashov, et al., Appl. Phys. Lett. 114, 073506 (2019). https://doi.org/10.1063/1.5084024

    Article  CAS  Google Scholar 

  27. D. N. Karimov, V. V. Grebenev, A. G. Ivanova, et al., Crystallogr. Rep. 63, 614 (2018). https://doi.org/10.1134/S1063774518040107

    Article  CAS  Google Scholar 

  28. P. A. Popov, N. V. Moiseev, D. N. Karimov, et al., Crystallogr. Rep. 60, 740 (2015). https://doi.org/10.1134/S1063774515050090

    Article  CAS  Google Scholar 

  29. N. M. Kompanichenko, A. A. Omelchuk, A. P. Ivanenko, et al., Russ. J. Appl. Chem. 86, 1835 (2013). https://doi.org/10.1134/S1070427213120069

    Article  CAS  Google Scholar 

  30. B. P. Sobolev, T. M. Turkina, N. I. Sorokin, et al., Crystallogr. Rep. 55, 657 (2010). https://doi.org/10.1134/S1063774510040206

    Article  CAS  Google Scholar 

  31. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  32. T. Petzel and O. Greis, Z. Anorg. Allg. Chem. 398, 95 (1973).

    Article  Google Scholar 

  33. T. Petzel, J. Less-Common. Metals 108, 241 (1985).

    Article  CAS  Google Scholar 

  34. G. E. R. Schulze, Z. Phys. Chem. 32B, 430 (1936).

    Article  Google Scholar 

  35. T. Petzel and O. Greis, Z. Anorg. Allg. Chem. 388, 137 (1972).

    Article  CAS  Google Scholar 

  36. V. G. Bamburov, M. V. Panova, A. S. Vinogradova, in Proceedings of the 2nd All-Union Symposium in Chemistry of Inorganic Fluorides (Akad Nauk SSSR, Moscow, 1979), p. 206.

Download references

Funding

This work was supported by the Ministry of Science and Higher Education as part of work under an order of the Government to the Crystallography and Photonics Federal Scientific Research Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I. Unit Cell Parameter and Density Calculations for Sm1 – xRxF2 + x, Eu1 – xRxF2 + x, and Yb1 – xRxF2 + x (R Is a Rare-Earth Element) Crystals. Russ. J. Inorg. Chem. 66, 989–995 (2021). https://doi.org/10.1134/S0036023621070135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621070135

Keywords:

Navigation