Skip to main content
Log in

Synthesis and Thermophysical Properties of Ceramics Based on Magnesium Gallate

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A ceramic was produced from a nanocrystalline magnesium gallate powder synthesized by the gel combustion method, and the thermal diffusivity of the ceramic at high temperatures was experimentally investigated. The phase and chemical composition of the MgGa2O4 ceramic powder was studied by X-ray powder diffraction analysis, X-ray fluorescence spectroscopy, and CHNS elemental analysis. The microstructural parameters of the obtained ceramic material were determined by scanning electron microscopy. The average particle size of the MgGa2O4 powder was found to be 80 nm. The ceramic produced by sintering the compacted MgGa2O4 powder at 1673 K in air had a density of 4670 kg/m3 (88% of the theoretical density). The average size of the crystalline grains of the ceramic after sintering did not exceed 1 μm. The thermal diffusivity of the ceramic based on MgGa2O4 in the temperature range 300–1173 K was for the first time studied by the laser flash method. It was found that its thermal conductivity in the studied temperature range decreased from 2.25 to 0.96 W/(m K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. R. Wilkerson, J. D. Smith, T. P. Sander, et al., J. Am. Ceram. Soc. 96, 859 (2013). https://doi.org/10.1111/jace.12125

    Article  CAS  Google Scholar 

  2. Z. Galazka, Transparent Semiconducting Oxides: Bulk Crystal Growth and Fundamental Properties (Jenny Stanford Publishing Pte. Ltd., New York, 2020).

    Book  Google Scholar 

  3. T. D. Shen, S. Feng, M. Tang, et al., Appl. Phys. Lett. 90, 263115 (2007). https://doi.org/10.1063/1.2753098

    Article  CAS  Google Scholar 

  4. A. Gentils, S. E. Enescu, L. Thome, et al., J. Appl. Phys. 97, 113509 (2007). https://doi.org/10.1063/1.1924879

    Article  CAS  Google Scholar 

  5. S. Wu, J. Xue, R. Wang, et al., J. Alloys Compd. 585, 542 (2014). https://doi.org/10.1016/j.jallcom.2013.09.176

    Article  CAS  Google Scholar 

  6. S. Wu, J. Xue, and Y. Fan, J. Am. Ceram. Soc. 97, 3555 (2014). https://doi.org/10.1111/jace.13157

    Article  CAS  Google Scholar 

  7. A. Luchechko and O. Kravets, J. Lumin. 192, 11 (2017). https://doi.org/10.1016/j.jlumin.2017.05.046

    Article  CAS  Google Scholar 

  8. B. Jiang, F. Chi, X. Wei, et al., J. Appl. Phys. 124, 063101 (2018). https://doi.org/10.1063/1.5024771

    Article  CAS  Google Scholar 

  9. A. Luchechko, Y. Shpotyuk, O. Kravets, et al., J. Adv. Ceram. 9, 432 (2020). https://doi.org/10.1007/s40145-020-0386-5

    Article  CAS  Google Scholar 

  10. Y. Zhao, J. Du, X. Wu, et al., J. Lumin. 220, 117035 (2020). https://doi.org/10.1016/j.jlumin.2020.117035

    Article  CAS  Google Scholar 

  11. L. He, C. Gao, L. Yang, et al., Sens. Actuators 306, 127453 (2019). https://doi.org/10.1016/j.snb.2019.127453

    Article  CAS  Google Scholar 

  12. P. Feng, J. Zhao, J. Zhang, et al., J. Alloys Compd. 695, 1884 (2017). https://doi.org/10.1016/j.jallcom.2016.10.324

    Article  CAS  Google Scholar 

  13. X. Duan, J. Liu, X. Wang, et al., Opt. Mater. 37, 854 (2014). https://doi.org/10.1016/j.optmat.2014.09.029

    Article  CAS  Google Scholar 

  14. Z. Galazka, D. Klimm, K. Irmscher, et al., Phys. Status Solidi A 212, 1455 (2015). https://doi.org/10.1002/pssa.201431835

    Article  CAS  Google Scholar 

  15. L. Wang, X. Cui, J. Rensberg, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 409, 153 (2017). https://doi.org/10.1016/j.nimb.2017.05.023

    Article  CAS  Google Scholar 

  16. B. Thielert, C. Janowitz, Z. Galazka, et al., Phys. Rev. 97, 235309. https://doi.org/10.1103/PhysRevB.97.235309

  17. O. N. Kondrat’eva, A. V. Tyurin, G. E. Nikiforova, et al., Thermochim. Acta 641, 49 (2016). https://doi.org/10.1016/j.tca.2016.08.015

    Article  CAS  Google Scholar 

  18. K. T. Jacob and S. Sivakumar, J. Alloys Compd. 775, 1357 (2018). https://doi.org/10.1016/j.jallcom.2018.10.147

    Article  CAS  Google Scholar 

  19. L. Schwarz, Z. Galazka, T. M. Gesing, et al., Cryst. Res. Technol. 50, 961 (2015). https://doi.org/10.1002/crat.201500275

    Article  CAS  Google Scholar 

  20. C. Hirschle, J. Schreuer, and Z. Galazka, J. Appl. Phys. 124, 065111 (2018). https://doi.org/10.1063/1.5037786

    Article  CAS  Google Scholar 

  21. N. Schlegel, S. Ebert, G. Mauer, et al., J. Therm. Spray Technol. 24, 144 (2015). https://doi.org/10.1007/s11666-014-0138-6

    Article  CAS  Google Scholar 

  22. S. Ebert, R. Mücke, D. Mack, et al., J. Eur. Ceram. Soc. 33, 3335 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.021

    Article  CAS  Google Scholar 

  23. J. A. Cape and G. W. Lehman, J. Appl. Phys. 34, 1909 (1963). https://doi.org/10.1063/1.1729711

    Article  Google Scholar 

  24. K. W. Schlichting, N. P. Padture, and P. G. Klemens, J. Mater. Sci. 36, 3003 (2001). https://doi.org/10.1023/A:1017970924312

    Article  CAS  Google Scholar 

  25. J. E. Weidenborner, N. R. Stemple, and Y. Okaya, Acta Crystallogr. 20, 761 (1966). https://doi.org/10.1107/S0365110X66001816

    Article  CAS  Google Scholar 

  26. T. Ito, A. Yoshiasa, and T. Yamanaka, Z. Anorg. Allg. Chem. 626, 42 (2000). https://doi.org/10.1002/(SICI)1521-3749(200001)626:1<42::AID-ZAAC42>3.0.CO;2-O

    Article  CAS  Google Scholar 

  27. J. Wu, X. Wei, N. P. Padture, et al., J. Am. Ceram. Soc. 85, 3031 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00574.x

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using equipment of the Center for Common Use of Physical Methods of Investigation of Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported by the Russian Science Foundation (project no. 20-73-00241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Kondrat’eva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’eva, O.N., Nikiforova, G.E., Smirnova, M.N. et al. Synthesis and Thermophysical Properties of Ceramics Based on Magnesium Gallate. Russ. J. Inorg. Chem. 66, 957–962 (2021). https://doi.org/10.1134/S0036023621070068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621070068

Keywords:

Navigation