Skip to main content
Log in

Synthesis of Calcium Fluoride Nanoparticles in a Microreactor with Intensely Swirling Flows

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Calcium fluoride powders were prepared by reacting solutions of calcium nitrate (\({{c}_{{{\text{Ca}}{{{({\text{N}}{{{\text{O}}}_{{\text{3}}}})}}_{{\text{2}}}}}}}\) = 0.3846 mol/L) and potassium fluoride (cKF = 0.7692 mol/L) in a microreactor with intensely swirling flows at a reagent flow rate of 2.1–3.2 L/min. Colloidal solutions were thus prepared, whose settling yielded CaF2 powders with a mean size of coherent scattering domains of about 40 nm. The particles had no crystallographic faceting. An increase in reagent flow rate prevented the formation of agglomerates and improved the grain-size uniformity of the powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. P. Yushkin, N. V. Volkova, and G. A. Markova, Optical Fluorite (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  2. J. F. Grayson, Micropaleontology 2, 71 (1956).https://doi.org/10.2307/1484493

    Article  CAS  Google Scholar 

  3. I. P. Shcherban’, Dokl. AN SSSR, 178, 209 (1968).

    Google Scholar 

  4. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, J. Fluorine Chem. 132, 1012 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.025

    Article  CAS  Google Scholar 

  5. F. Wang, X. Fan, D. Pi, and M. Wang, Solid State Commun. 133, 775 (2005).

    Article  CAS  Google Scholar 

  6. J. Labeguerie, P. Gredin, M. A. Mortier, et al., Z. Anorg. Allg. Chem. 632, 1538 (2006).

    Article  Google Scholar 

  7. C. Feldmann, M. Roming, and K. Trampert, Small 2, 1248 (2006).

    Article  CAS  Google Scholar 

  8. G. Wang, Q. Peng, and Y. Li, J. Am. Chem. Soc. 131, 14200 (2009).

    Article  CAS  Google Scholar 

  9. C. Zhang, C. Li, C. Peng, et al., Chem. Eur. J. 16, 5672 (2010).

    Article  CAS  Google Scholar 

  10. S. Hou, Y. Zou, X. Yu, et al., CrystEngComm 13, 835 (2011). https://doi.org/10.1039/C0CE00396D

    Article  CAS  Google Scholar 

  11. S. V. Kuznetsov, A. S. Nizamutdinov, M. N. Mayakova, et al., J. Fluorine Chem. 222223, 46 (2019). https://doi.org/10.1016/j.jfluchem.2019.04.010

    Article  CAS  Google Scholar 

  12. A. A. Alexandrov, M. N. Mayakova, V. V. Voronov, et al., Condens. Matter Interphases 22, 3 (2020).https://doi.org/10.17308/kcmf.2020.22/2524

    Article  Google Scholar 

  13. S. V. Kuznetsov, A. A. Alexandrov, P. P. Fedorov, Inorg. Mater. 57 (6), 555 (2021).https://doi.org/10.1134/S0020168521060078

  14. A. Bensalah, M. Mortier, G. Patriarche, et al., J. Solid State Chem. 179, 2621 (2006).

    Article  Google Scholar 

  15. J. Sarthou, P. Aballea, G. Patriarche, et al., J. Am. Ceram. Soc. 99 (6), 1992 (2016).

    Article  CAS  Google Scholar 

  16. W. Li, H. Huang, B. Mei, et al., Ceram. Int. 46, 19530 (2020). https://doi.org/10.1016/j.ceramint.2020.05.003

    Article  CAS  Google Scholar 

  17. Z. Liu, M. Jia, G. Yi, et al., J. Alloys Compd. 646, 760 (2015).

    Article  CAS  Google Scholar 

  18. Z. Wan, W. Li, B. Mei, et al., J. Lumin. 223, 117188 (2020).

    Article  CAS  Google Scholar 

  19. Yu. Yang, W. Li, B. Mei, et al., J. Lumin. 213, 504 (2019).

    Article  CAS  Google Scholar 

  20. Z. Zhou, W. Li, J. Song, et al., J. Eur. Ceram. Soc. 39, 2446 (2019).

    Article  CAS  Google Scholar 

  21. S. V. Kuznetsov, I. V. Yarotskya, P. P. Fedorov, et al., Russ. J. Inorg. Chem. 52, 315 (2007). https://doi.org/10.1134/S0036023607030035

    Article  Google Scholar 

  22. P. P. Fedorov, S. V. Kuznetsov, M. N. Mayakova, et al., Russ. J. Inorg. Chem. 56, 1525 (2011). https://doi.org/10.1134/S003602361110007X

    Article  CAS  Google Scholar 

  23. Pandurangappa, B. N. Lakshminarappa, and B. M. Nagabhushana, J. Alloys Compd. 489, 592 (2010).

    Article  CAS  Google Scholar 

  24. P. P. Fedorov, M. N. Maykova, S. V. Kuznetsov, et al., Russ. J. Inorg. Chem. 61, 1472 (2016). https://doi.org/10.1134/S003602361611005X

    Article  CAS  Google Scholar 

  25. P. P. Fedorov, M. N. Mayakova, A. A. Alexandrov, et al., Inorganics 6, 38 (2018). https://doi.org/10.3390/inorganics6020038

    Article  CAS  Google Scholar 

  26. P. P. Fedorov and A. A. Alexandrov, J. Fluorine Chem. 227, 109374 (2019). https://doi.org/10.1016/j.jfluchem.2019.109374

    Article  CAS  Google Scholar 

  27. V. Yu. Proydakova, A. A. Alexandrov, V. V. Voronov, and P. P. Fedorov, Russ. J. Inorg. Chem. 65, 834 (2020). https://doi.org/10.1134/S0036023620060169

    Article  CAS  Google Scholar 

  28. T. Yu. Glazunova, A. I. Boltalin, and P. P. Fedorov, Russ. J. Inorg. Chem. 51, 983 (2006). https://doi.org/10.1134/S0036023606070011

    Article  Google Scholar 

  29. A. E. Glikin, Polymineral-Metasomatic Crystallogenesis (Neva, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  30. K.-T. Vil’ke, Growing Crystals (Nedra, Leningrad, 1977) [in Russian].

    Google Scholar 

  31. I. V. Melikhov, V. F. Komarov, and Yu. A. Kozel, Kolloid. Zhurn. 50, 690 (1988).

    CAS  Google Scholar 

  32. Y. Mao, F. Zhang, and S. S. Wong, Adv. Mater. 18, 1895 (2006).

    Article  CAS  Google Scholar 

  33. L. Wang, B. Wang, X. Wang, and W. Liu, Tribology Inter. 40, 1179 (2007).

    Article  CAS  Google Scholar 

  34. X. Zhang, Z. Quan, J. Yang, et al., Nanotecnology 19, 075603 (2008).

    Article  Google Scholar 

  35. R. Mashiach, H. Weissman, L. Avram, et al., Nature Comm. 12, 229 (2021). https://doi.org/10.1038/s41467-020-20512-6

    Article  CAS  Google Scholar 

  36. T. Demkiv, M. Chylii, V. Vistovskyy, et al., J. Lumin. 190, 10 (2017).

    Article  CAS  Google Scholar 

  37. V. V. Vistovskyy, A. V. Zhyshkovych, O. O. Halyatkin, et al., J. Appl. Phys. 116, 054308 (2014). https://doi.org/10.1063/1.4892112

    Article  CAS  Google Scholar 

  38. S. Kuznetsov, Yu. Ermakova, V. Voronov, et al., J. Mater. Chem. C. 6, 598 (2018). https://doi.org/10.1039/c7tc04913g

    Article  CAS  Google Scholar 

  39. O. V. Proskurina, R. S. Abiev, D. P. Danilovich, et al., Chem. Eng. Process: Process Int. 143, 107598 (2019). https://doi.org/10.1016/j.cep.2019.107598

    Article  CAS  Google Scholar 

  40. A. V. Zdravkov, Y. S. Kudryashova, and R. S. Abiev, Russ. J. Gen. Chem. 90, 1677 (2020). https://doi.org/10.1134/S1070363220090145

    Article  CAS  Google Scholar 

  41. Y. S. Kudryashova, A. V. Zdravkov, V. L. Ugolkov, and R. S. Abiev, Glass Phys. Chem. 46, 335 (2020). https://doi.org/10.1134/S1087659620040082

    Article  CAS  Google Scholar 

  42. Y. Albadi, A. A. Sirotkin, V. G. Semenov, R. S. Abiev, and V. I. Popkov, Russ. Chem. Bull. 69, 1290 (2020).

    Article  CAS  Google Scholar 

  43. O. V. Proskurina, E. V. Sivtsov, M. O. Enikeeva, et al., Nanosyst.: Phys., Chem., Math. 10, 206 (2019). https://doi.org/10.17586/222080542019102206214

    Article  CAS  Google Scholar 

  44. J. Bałdyga and J. R. Bourne, Encyclopedia of Fluid Mechanics, Ed. by N. P. Cheremisinoff, vol. 1 (Gulf Publishing Company, Houston, 1986).

    Google Scholar 

  45. J. Bałdyga and J. R. Bourne, Turbulent Mixing and Chemical Reactions (Wiley, Chichester, 1999).

    Google Scholar 

  46. A. Ghanem, T. Lemenand, D. Della Valle, and H. Peerhossaini, Chem. Eng. Res. Des. 92, 205 (2014).

    Article  CAS  Google Scholar 

  47. R. Sh. Abiev, Teor. Found. Chem. Eng. 54, 1131 (2020). https://doi.org/10.1134/S0040579520060019

    Article  CAS  Google Scholar 

  48. L. Falk and J.-M. Commenge, Chem. Eng. Sci. 65, 405 (2010).

    Article  CAS  Google Scholar 

  49. R. Sh. Abiev, RU Patent No. 2 736 287, Byull. Izobret., No. 32, 2020.

  50. R. Sh. Abiev and A. A. Sirotkin, Fluids 5, 179 (2020). https://doi.org/10.3390/fluids5040179

    Article  CAS  Google Scholar 

  51. P. P. Fedorov and V. V. Osiko, Dokl. Phys. 64, 353 (2019). https://doi.org/10.1134/S1028335819090076

    Article  CAS  Google Scholar 

  52. R. E. Thoma, Advances in Molten Salt Chemistry, Ed. by J. Braunstein, G. Mamantov, and G. P. Smith (Plenum Press, New York-London, 1975), vol. 3.

    Google Scholar 

  53. W. L. W. Ludekens and A. J. E. Welch, Acta Crystallogr. 5, 841 (1952).

    Article  CAS  Google Scholar 

  54. S. V. Kuznetsov, A. A. Ovsyannikova, E. A. Tupitsyna, et al., J. Fluorine Chem. 161, 95 (2014). https://doi.org/10.1016/j.jfluchem.2014.02.011

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The facilities of the Shared Facilities Center of the Prokhorov General Physics Institute of the Russian Academy of Sciences and the Shared Facilities Center of the Kurnakov Institute of the Russian Academy of Sciences were used.

Funding

The work was in part supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0097-2019-0017) and in part supported by the Russian Foundation for Basic Research (project no. 18-29-12050-MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiev, R.S., Zdravkov, A.V., Kudryashova, Y.S. et al. Synthesis of Calcium Fluoride Nanoparticles in a Microreactor with Intensely Swirling Flows. Russ. J. Inorg. Chem. 66, 1047–1052 (2021). https://doi.org/10.1134/S0036023621070020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621070020

Keywords:

Navigation