Skip to main content
Log in

Role of PBL and Microphysical Parameterizations During WRF Simulated Monsoonal Heavy Rainfall Episodes Over Mumbai

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Monsoon circulation and associated rainfall add complexities in the boundary layer features over the Indian subcontinents. Besides relevant microphysical variables, the characteristics of various boundary layer parameters and their variations at differing spatial and temporal scales are investigated over Mumbai during monsoonal heavy rainfall scenarios. During the summer monsoon months (June to September) of 2014–2018, 16 heavy rainfall cases are chosen for this study. High-resolution simulation is conducted with three nested domains having a horizontal resolution of 18, 6, and 2 km with the 35 vertical levels in the advanced research WRF (WRF-ARW) model. The sensitivity experiment is carried out with seven planetary boundary layer (PBL) schemes; non-local first-order closure [Yonsei University (YSU), Asymmetric convective model, version 2 (ACM2), and Shin-Hong], local one-and-a-half order [Mellor–Yamada–Janjic (MYJ), quasi-normal scale elimination (QNSE), Bougeault–Lacarrére (BouLac), and Grenier-Bretherton-McCaa (GBM)] and five microphysics (MP) schemes [WSM6, Goddard, WDM6, Thompson, and Lin et al.]. PBL parameterization in combination with the Lin et al. scheme shows a significant impact on rainfall and dynamical and thermodynamical parameters at the surface and the upper levels. QNSE showed a relatively deeper and warmer atmospheric boundary layer compared to others to support strong upper-level divergence and high moisture content within the lower levels. Based on the results, QNSE is found to have a relatively better skill for representing the conducive environment, and Lin et al. microphysics could accommodate the same for the occurrence of the intense monsoonal rainfall events over Mumbai. The said combination is possibly effective for other coastal areas of India for better prediction of intense monsoonal rainfall episodes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alapaty, K., Pleim, J. E., Raman, S., Niyogi, D. S., & Byun, D. W. (1997). Simulation of atmospheric boundary layer processes using local-and nonlocal-closure schemes. Journal of Applied Meteorology, 36(3), 214–233.

    Google Scholar 

  • Banks, R. F., Tiana-Alsina, J., Baldasano, J. M., Rocadenbosch, F., Papayannis, A., Solomos, S., & Tzanis, C. G. (2016). Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmospheric Research, 176, 185–201.

    Google Scholar 

  • Bhimala, K. R., Gouda, K. C., & Himesh, S. (2021). Evaluating the spatial distribution of WRF-simulated rainfall, 2-m air temperature, and 2-m relative humidity over the urban region of Bangalore, India. Pure and Applied Geophysics, 178(3), 1105–1120.

    Google Scholar 

  • Boadh, R., Satyanarayana, A. N. V., Krishna, T. R., & Madala, S. (2016). Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for their application to air pollution dispersion modeling over a tropical station. Atmósfera, 29(1), 61–81.

    Google Scholar 

  • Borrego, C., Monteiro, A., Ferreira, J., Miranda, A. I., Costa, A. M., Carvalho, A. C., & Lopes, M. (2008). Procedures for estimation of modelling uncertainty in air quality assessment. Environment International, 34(5), 613–620.

    Google Scholar 

  • Bougeault, P., & Lacarrere, P. (1989). Parameterization of orography-induced turbulence in a mesobeta–scale model. Monthly Weather Review, 117(8), 1872–1890.

    Google Scholar 

  • Braun, S. A., & Tao, W. K. (2000). Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Monthly Weather Review, 128(12), 3941–3961.

    Google Scholar 

  • Bright, D. R., & Mullen, S. L. (2002). The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Weather and Forecasting, 17(1), 99–114.

    Google Scholar 

  • Chang, H. I., Kumar, A., Niyogi, D., Mohanty, U. C., Chen, F., & Dudhia, J. (2009). The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India. Global and Planetary Change, 67(1–2), 87–103.

    Google Scholar 

  • Coniglio, M. C., Correia, J., Jr., Marsh, P. T., & Kong, F. (2013). Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Weather and Forecasting, 28(3), 842–862.

    Google Scholar 

  • Cooper, W. A. (1986). Ice initiation in natural clouds. In Precipitation enhancement—a scientific challenge (pp. 29–32). American Meteorological Society.

    Google Scholar 

  • Deng, A., & Stauffer, D. R. (2006). On improving 4-km mesoscale model simulations. Journal of Applied Meteorology and Climatology, 45(3), 361–381.

    Google Scholar 

  • Dawn, S., & Satyanarayana, A. N. V. (2020). Sensitivity studies of cloud microphysical schemes of WRF-ARW model in the simulation of trailing stratiform squall lines over the Gangetic West Bengal region. Journal of Atmospheric and Solar-Terrestrial Physics, 209, 105396.

    Google Scholar 

  • Efstathiou, G. A., Zoumakis, N. M., Melas, D., Lolis, C. J., & Kassomenos, P. (2013). Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes. Effect on Large-Scale Processes. Atmospheric Research, 132, 125–143.

    Google Scholar 

  • Emery, C.A. (2001). Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Texas Natural Resource Conservation Commission, ENVIRON International Corporation, pp. 1–235. http://www.tceq.state.tx.us/assets/public/implementation/air/am/contracts/reports/mm/EnhancedMetModelingAndPerformanceEvaluation.pdf.

  • Galperin, B., & Sukoriansky, S. (2010). Progress in turbulence parameterization for geophysical flows. In The 3rd international workshop on Next-generation NWP models: bridging parameterization, explicit clouds, and large eddies. Seoul, Korea (Vol. 5).

  • Garratt, J. R. (1994). The atmospheric boundary layer. Earth-Science Reviews, 37(1–2), 89–134.

    Google Scholar 

  • Gilliam, R. C., Hogrefe, C., & Rao, S. T. (2006). New methods for evaluating meteorological models used in air quality applications. Atmospheric Environment, 40(26), 5073–5086.

    Google Scholar 

  • Gordon, N. D., & Shaykewich, J. (2000). Guidelines on performance assessment of public weather services. World Meteorological Organization, WMO/TD No. 1023, pp. 1–67. https://www.wmo.int/pages/prog/hwrp/documents/FFI/expert/Guidelines_on_Performance_Assessment_of_Public_Weather_Services.pdf

  • Grenier, H., & Bretherton, C. S. (2001). A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review, 129(3), 357–377.

    Google Scholar 

  • Gunwani, P., & Mohan, M. (2017). Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmospheric Research, 194, 43–65.

    Google Scholar 

  • Hariprasad, K. B. R. R., Srinivas, C. V., Singh, A. B., Rao, S. V. B., Baskaran, R., & Venkatraman, B. (2014). Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmospheric Research, 145, 27–44.

    Google Scholar 

  • Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129–151.

    Google Scholar 

  • Hong, S. Y., Lim, K. S. S., Lee, Y. H., Ha, J. C., Kim, H. W., Ham, S. J., & Dudhia, J. (2010). Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Advances in Meteorology. https://doi.org/10.1155/2010/707253

    Article  Google Scholar 

  • Hong, S. Y., & Pan, H. L. (1996). Non-local boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124(10), 2322–2339.

    Google Scholar 

  • Igri, P. M., Tanessong, R. S., Vondou, D. A., Panda, J., Garba, A., Mkankam, F. K., & Kamga, A. (2018). Assessing the performance of WRF model in predicting high-impact weather conditions over Central and Western Africa: An ensemble-based approach. Natural Hazards, 93(3), 1565–1587.

    Google Scholar 

  • Jain, S., Roy, S. B., Panda, J., & Rath, S. S. (2021). Modeling of land-use and land-cover change impact on summertime near-surface temperature variability over the Delhi-Mumbai Industrial Corridor. Modeling Earth Systems and Environment, 7(2), 1309–1319.

    Google Scholar 

  • Janjić, Z. I. (1990). The step-mountain coordinate: Physical package. Monthly Weather Review, 118(7), 1429–1443.

    Google Scholar 

  • Janjić, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927–945.

    Google Scholar 

  • Janjić, Z. I. (2000). Comments on “Development and evaluation of a convection scheme for use in climate models.” Journal of the Atmospheric Sciences, 57(21), 3686–3686.

    Google Scholar 

  • Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D., & Mohanty, U. C. (2008). Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society, 134(636), 1897–1910.

    Google Scholar 

  • Lang, S., Tao, W. K., Simpson, J., Cifelli, R., Rutledge, S., Olson, W., et al. (2007). Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. Journal of the atmospheric sciences, 64(4), 1141–1164.

    Google Scholar 

  • Li, X. X., Koh, T. Y., Entekhabi, D., Roth, M., Panda, J., & Norford, L. K. (2013). A multi-resolution ensemble study of a tropical urban environment and its interactions with the background regional atmosphere. Journal of Geophysical Research: Atmospheres, 118(17), 9804–9818.

    Google Scholar 

  • Li, X. X., Koh, T. Y., Panda, J., & Norford, L. K. (2016). Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. Journal of Geophysical Research: Atmospheres, 121(9), 4386–4403.

    Google Scholar 

  • Lim, K. S. S., & Hong, S. Y. (2010). Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review, 138(5), 1587–1612.

    Google Scholar 

  • Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22(6), 1065–1092.

    Google Scholar 

  • Liu, Y., & Avissar, R. (1996). Sensitivity of shallow convective precipitation induced by land surface heterogeneities to dynamical and cloud microphysical parameters. Journal of Geophysical Research: Atmospheres, 101(D3), 7477–7497.

    Google Scholar 

  • Mitchell, D. L., Rasch, P., Ivanova, D., McFarquhar, G., & Nousiainen, T. (2008). Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophysical Research Letters, 35(9).

  • Moeng, C. H. (1984). A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 41(13), 2052–2062.

    Google Scholar 

  • Mohan, M., & Bhati, S. (2011). Analysis of WRF model performance over subtropical region of Delhi, India. Advances in Meteorology. https://doi.org/10.1155/2011/621235

    Article  Google Scholar 

  • Mohan, M., & Gupta, M. (2018). Sensitivity of PBL parameterizations on PM10 and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India. Atmospheric Environment, 185, 53–63.

    Google Scholar 

  • Mohan, P. R., Srinivas, C. V., Yesubabu, V., Baskaran, R., & Venkatraman, B. (2018). Simulation of a heavy rainfall event over Chennai in Southeast India using WRF: Sensitivity to microphysics parameterization. Atmospheric Research, 210, 83–99.

    Google Scholar 

  • Orr, A., Listowski, C., Couttet, M., Collier, E., Immerzeel, W., Deb, P., & Bannister, D. (2017). Sensitivity of simulated summer monsoonal precipitation in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF. Journal of Geophysical Research: Atmospheres, 122(12), 6298–6318.

    Google Scholar 

  • Panda, J., & Giri, R. K. (2012). A comprehensive study of surface and upper-air characteristics over two stations on the west coast of India during the occurrence of a cyclonic storm. Natural Hazards, 64(2), 1055–1078.

    Google Scholar 

  • Panda, J., & Sharan, M. (2012). Influence of land-surface and turbulent parameterization schemes on regional-scale boundary layer characteristics over northern India. Atmospheric Research, 112, 89–111.

    Google Scholar 

  • Panda, J., Sharan, M., & Gopalakrishnan, S. G. (2009). Study of regional-scale boundary layer characteristics over Northern India with a special reference to the role of the Thar Desert in regional-scale transport. Journal of Applied Meteorology and Climatology, 48(11), 2377–2402.

    Google Scholar 

  • Persson, P., Walter, B., Bao, J. W., & Michelson, S. (2001). Validation of boundary-layer parameterizations in maritime storm using aircraft data. Preprints. In Ninth Conf. on Mesoscale Processes (pp. 117–121).

  • Pieri, A. B., von Hardenberg, J., Parodi, A., & Provenzale, A. (2015). Sensitivity of precipitation statistics to resolution, microphysics, and convective parameterization: A case study with the high-resolution WRF climate model over Europe. Journal of Hydrometeorology, 16(4), 1857–1872.

    Google Scholar 

  • Pleim, J. E. (2007). A combined local and non-local closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. Journal of Applied Meteorology and Climatology, 46(9), 1396–1409.

    Google Scholar 

  • Rai, D., & Pattnaik, S. (2019). Evaluation of WRF planetary boundary layer parameterization schemes for simulation of monsoon depressions over India. Meteorology and Atmospheric Physics. https://doi.org/10.1007/s00703-019-0656-3

    Article  Google Scholar 

  • Rajeevan, M., Kesarkar, A., Thampi, S. B., Rao, T. N., Radhakrishna, B., & Rajasekhar, M. (2010). Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Annales Geophysicae, 28(2), 603–619.

    Google Scholar 

  • Rao, B. K., & Rakesh, V. (2019). Evaluation of WRF-simulated multilevel soil moisture, 2-m air temperature, and 2-m relative humidity against in situ observations in India. Pure and Applied Geophysics, 176(4), 1807–1826.

    Google Scholar 

  • Rath, S. S., & Panda, J. (2019). A study of near-surface boundary layer characteristics during the 2015 Chennai flood in the context of urban-induced land use changes. Pure and Applied Geophysics, 176(6), 2607–2629.

    Google Scholar 

  • Rath, S. S., & Panda, J. (2020). Urban induced land-use change impact during pre-monsoon thunderstorms over Bhubaneswar-Cuttack urban complex. Urban Climate, 32, 100628.

    Google Scholar 

  • Ribeiro, I., Martilli, A., Falls, M., Zonato, A., & Villalba, G. (2021). Highly resolved WRF-BEP/BEM simulations over Barcelona urban area with LCZ. Atmospheric Research, 248, 105220.

    Google Scholar 

  • Rutledge, S. A., & Hobbs, P. V. (1984). The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. Journal of the Atmospheric Sciences, 41(20), 2949–2972.

    Google Scholar 

  • Sathyanadh, A., Prabha, T. V., Balaji, B., Resmi, E. A., & Karipot, A. (2017). Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley. Atmospheric Research, 193, 125–141.

    Google Scholar 

  • Sati, A. P., & Mohan, M. (2018). The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region, India. Theoretical and Applied Climatology, 134(1), 309–323.

    Google Scholar 

  • Schlünzen, K. H., & Sokhi, R. S. (2008). Overview of tools and methods for meteorological and air pollution mesoscale model evaluation and user training. Joint Report by WMO and COST, 728, 116.

    Google Scholar 

  • Shin, H. H., & Hong, S. Y. (2011). Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorology, 139(2), 261–281.

    Google Scholar 

  • Shin, H. H., & Hong, S. Y. (2015). Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Monthly Weather Review, 143(1), 250–271.

    Google Scholar 

  • Singh, K. S., Bonthu, S., Purvaja, R., Robin, R. S., Kannan, B. A. M., & Ramesh, R. (2018). Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes. Atmospheric Research, 202, 219–234.

    Google Scholar 

  • Skamarock, W. C., & Klemp, J. B. (1992). The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Monthly Weather Review, 120(9), 2109–2127.

    Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., et al. (2008). A description of the advanced research WRF, Version 3, Technical report, NCAR/TN-475+ STR.

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2005). A description of the advanced research WRF version 2 (No. NCAR/TN-468+ STR). National Center for Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.

  • Srinivas, C. V., Yesubabu, V., Prasad, D. H., Prasad, K. H., Greeshma, M. M., Baskaran, R., & Venkatraman, B. (2018). Simulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid resolution and boundary layer physics. Atmospheric Research, 210, 66–82.

    Google Scholar 

  • Srinivas, G., Remya, P. G., Kumar, B. P., Modi, A., & Nair, T. B. (2020). The impact of Indian Ocean Dipole on tropical Indian Ocean surface wave heights in ERA5 and CMIP5 models. International Journal of Climatology. https://doi.org/10.1002/joc.6900

    Article  Google Scholar 

  • Srivastava, P., & Sharan, M. (2017). An analytical formulation of the Monin-Obukhov stability parameter in the atmospheric surface layer under unstable conditions. Boundary-Layer Meteorology, 165(2), 371–384.

    Google Scholar 

  • Stensrud, D. J. (2009). Parameterization schemes: Keys to understanding numerical weather prediction models. Cambridge University Press.

    Google Scholar 

  • Stensrud, D. J., & Weiss, S. J. (2002). Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Weather and Forecasting, 17(3), 526–543.

    Google Scholar 

  • Stull, R. B. (1988). Mean boundary layer characteristics. In an introduction to boundary layer meteorology (pp. 1–27). Springer.

    Google Scholar 

  • Stull, R. B. (1991). Static stability—an update. Bulletin of the American Meteorological Society, 72(10), 1521–1530.

    Google Scholar 

  • Stull, R. B. (2012). An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media.

    Google Scholar 

  • Sukoriansky, S., Galperin, B., & Staroselsky, I. (2005). A quasi-normal scale elimination model of turbulent flows with stable stratification. Physics of Fluids, 17(8), 085107.

    Google Scholar 

  • Tao, W. K., & Simpson, J. (1993). The Goddard cumulus ensemble model. Part I: Model description. Terrestrial, Atmospheric and Oceanic Sciences, 4(1), 35–72.

    Google Scholar 

  • Tao, W. K., Simpson, J., Baker, D., Braun, S., Chou, M. D., Ferrier, B., et al. (2003). Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorology and Atmospheric Physics, 82(1), 97–137.

    Google Scholar 

  • Tao, W. K., Simpson, J., & McCumber, M. (1989). An ice-water saturation adjustment. Monthly Weather Review, 117(1), 231–235.

    Google Scholar 

  • Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 24(5), 2527–2544.

    Google Scholar 

  • Tastula, E. M., Galperin, B., Dudhia, J., LeMone, M. A., Sukoriansky, S., & Vihma, T. (2015). Methodical assessment of the differences between the QNSE and MYJ PBL schemes for stable conditions. Quarterly Journal of the Royal Meteorological Society, 141(691), 2077–2089.

    Google Scholar 

  • Thompson, G., Rasmussen, R. M., & Manning, K. (2004). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Monthly Weather Review, 132(2), 519–542.

    Google Scholar 

  • Tiwari, S., Kar, S. C., & Bhatla, R. (2018). Dynamic downscaling over western Himalayas: Impact of cloud microphysics schemes. Atmospheric Research, 201, 1–16.

    Google Scholar 

  • Walko, R. L., Cotton, W. R., Meyers, M. P., & Harrington, J. Y. (1995). New RAMS cloud microphysics parameterization part I: The single-moment scheme. Atmospheric Research, 38(1–4), 29–62.

    Google Scholar 

  • Wang, W., Barker, D., Bruyere, C., Dudhia, J., Gill, D., and Michalakes, J. (2004), WRF Version 2 modeling system user’s guide, http://www.mmm.ucar.edu/wrf/users/docs/userguide/.

  • Wang, W., Beezley, C., & Duda, M. (2012). WRF ARW V3: user’s guide. Wang, C. Beezley, M. Duda, et al. http://www.mmm.ucar.edu/wrf/users (accessed: 11.01. 2013).

  • Wang, W., Bruyere, C., Duda, M., Dudhia, J., Gill, D., Kavulich, M., Rizvi, S., & et al. (2017). User’s Guides for the Advanced Research WRF (ARW) Modeling System. Version 3. https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/user_guide_V3.8/ARWUsersGuideV3.8.pdf.

  • Wang, Y., Feng, J., Luo, M., Wang, J., & Qiu, Y. (2020). Uncertainties in simulating central Asia: Sensitivity to physical parameterizations using Weather Research and Forecasting model. International Journal of Climatology, 40(14), 5813–5828.

    Google Scholar 

  • Weisman, M. L., Davis, C., Wang, W., Manning, K. W., & Klemp, J. B. (2008). Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Weather and Forecasting, 23(3), 407–437.

    Google Scholar 

  • Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184–194.

    Google Scholar 

  • Wisse, J. S. P., & de Arellano, J. V. G. (2004). Analysis of the role of the planetary boundary layer schemes during a severe convective storm. Annales Geophysicae, 22(6), 1861–1874.

    Google Scholar 

  • Zeng, X., Tao, W. K., Lang, S., Hou, A. Y., Zhang, M., & Simpson, J. (2008). On the sensitivity of atmospheric ensembles to cloud microphysics in long-term cloud-resolving model simulations. Journal of the Meteorological Society of Japan Series II, 86, 45–65.

    Google Scholar 

  • Zeng, X., Tao, W. K., Zhang, M., Hou, A. Y., Xie, S., Lang, S., et al. (2009). An indirect effect of ice nuclei on atmospheric radiation. Journal of the Atmospheric Sciences, 66(1), 41–61.

    Google Scholar 

  • Zhang, D. L., & Zheng, W. Z. (2004). Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. Journal of Applied Meteorology, 43(1), 157–169.

    Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to the National Aeronautics and Space Administration (NASA) Precipitation Measurements Mission (GPM) for providing the half-hourly rainfall data (https://gpm.nasa.gov/data-access/downloads/gpm), National Centers for Environmental Prediction (NCEP) for initial and National Center for Atmospheric Research for global FNL data (https://rda.ucar.edu/datasets/ds083.2/), European Center for Medium-Range Weather Forecasts (ECMWF) for providing high-resolution ERA5 reanalysis data (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5), and weather underground (https://www.wunderground.com/) and Wyoming weather web (http://weather.uwyo.edu/upperair/) for providing station observations to validate the WRF model simulations.

Funding

This work was partly funded through the sponsored project by the Science and Engineering Research Board, Department of Science and Technology, Government of India with file no. EMR/2015/001358.

Author information

Authors and Affiliations

Authors

Contributions

SV wrote the initial draft. The figures were produced by Dr. SSR and SV. The simulations were jointly planned by all authors and carried out by SSR and SV. The primary idea of the work was of Dr. JP, who helped in manuscript writing, editing, and supervising. All the resources for executing the work were arranged by Dr. JP.

Corresponding author

Correspondence to Jagabandhu Panda.

Ethics declarations

Conflict of Interest

There are no scientific or financial conflicts of interest among the contributing authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1908 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Panda, J. & Rath, S.S. Role of PBL and Microphysical Parameterizations During WRF Simulated Monsoonal Heavy Rainfall Episodes Over Mumbai. Pure Appl. Geophys. 178, 3673–3702 (2021). https://doi.org/10.1007/s00024-021-02813-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02813-z

Keywords

Navigation