Skip to main content
Log in

Metabolic accumulation and related synthetic genes of O-acetyl groups in mannan polysaccharides of Dendrobium officinale

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Mannan polysaccharides (MPs), which contain substituted O-acetyl groups in their backbone, are abundant in the medicinal plant Dendrobium officinale. Acetyl groups can influence the physiological and biochemical properties of polysaccharides, which mainly accumulate in the stems of D. officinale at four developmental stages (S1–S4), showing an increasing trend and a link with water-soluble polysaccharides (WSPs) and mannose. The genes coding for enzymes that catalyze O-acetyl groups to MPs are unknown in D. officinale. The TRICHOME BIREFRINGENCE-LIKE (TBL) gene family contains TBL and DUF231 domains that can transfer O-acetyl groups to various polysaccharides. Based on an established D. officinale genome database, 37 DoTBL genes were identified. Analysis of cis-elements in the promoter region showed that DoTBL genes might respond to different hormones and abiotic stresses. Most of the genes with MeJA-responsive elements were upregulated or downregulated after treatment with MeJA. qRT-PCR results demonstrated that DoTBL genes had significantly higher expression levels in stems and leaves than in roots. Eight DoTBL genes showed relatively higher expression at S2–S4 stages, which showed a link with the content of WSPs and O-acetyl groups. DoTBL35 and its homologous gene DoTBL34 displayed the higher mRNA level in different organs and developmental stages, which might participate in the acetylation of MPs in D. officinale. The subcellular localization of DoTBL34 and DoTBL35 reveals that the endoplasmic reticulum may play an important role in the acetylation of MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used during the current study are available from corresponding author on reasonable request.

Abbreviations

ABA:

Abscisic acid

Axy9:

Altered xyloglucan9

GA:

Gibberellin

HPLC:

High performance liquid chromatography

MP:

Mannan polysaccharide

MeJA:

Methyl jasmonate

NJ:

Neighborhood-joining

ORF:

Open reading frame

PMP:

1-Phenyl-3-methyl-5-pyrazolone

qRT-PCR:

Quantitative real-time polymerase chain reaction

RWA:

Reduced wall acetylation

SA:

Salicylic acid

SDS:

Sodium dodecyl sulfate

TBL:

Trichome birefringence-like

WSP:

Water-soluble polysaccharide

References

  • Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR (2010) TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol 153:590–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RB, Liu JH, Xiao Y, Zhang F, Chen JF, Ji Q, Tan HX, Huang X, Feng H, Huang BK et al (2015) Deep sequencing reveals the effect of MeJA on scutellarin biosynthesis in Erigeron breviscapus. PLoS ONE 10:e0143881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020) TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

  • Chokboribal J, Tachaboonyakiat W, Sangvanich P, Ruangpornvisuti V, Jettanacheawchankit S, Thunyakitposal P (2015) Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera. Carbohyd Polym 133:556–566

    Article  CAS  Google Scholar 

  • Citovsky V, Lee LY, Vyas S, Glick E, Chen ME, Vainstein A, Gafni Y, Gelvin SB, Tzfira T (2006) Subcellular localization of interacting proteins by biomolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  CAS  PubMed  Google Scholar 

  • Du Bois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colormetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  • Gao YP, He CW, Zhang DM, Liu XL, Xu ZP, Tian YB, Liu XH, Zang SS, Pauly M, Zhou YH, Zhang BC (2017) Two trichome birefringence-like proteins mediate xylan acetylation, which is essential for leaf blight resistance in rice. Plant Physiol 173:470–481

    Article  CAS  PubMed  Google Scholar 

  • Ge JC, Zha XQ, Nie CY, Yu NJ, L QM, Peng DY, Duan J, Pan LH, Luo JP (2018) Polysaccharides from Dendrobium huoshanense stems alleviates lung inflammation in cigarette smoke-induced mice. Carbohy Polym 189:289–295

    Article  CAS  Google Scholar 

  • Gill S, Souza AD, Xiong GY, Benz M, Cheng K, Schultink A, Reca IB, Pauly M (2011) O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. Plant Cell 23:4041–4053

    Article  CAS  Google Scholar 

  • Gudlavalleti SK, Datta AK, Tzeng YL, Noble C, Carlson RW, Stephens DS (2004) The Neisseria meningitides serogroup a capsular polysaccharide O-3 and O-4 acetyltransferase. J Biol Chem 279:42765–42773

    Article  CAS  PubMed  Google Scholar 

  • Guo HH, Li RF, Liu SB, Zhao N, Han S, Lu MM, Liu XM, Xia XL (2016) Molecular characterization, expression, and regulation of Gynostemma pentaphyllum squalene epoxidase gene 1. Plant Physiol Biochem 109:230–239

    Article  CAS  PubMed  Google Scholar 

  • He CM, Zhang JX, Liu XC, Zeng SJ, Wu KL, Yu ZM, Wang XJ, Teixeira da Silva JA, Lin ZJ, Duan J (2015) Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol Biol 88:219–231

    Article  CAS  PubMed  Google Scholar 

  • He CM, Wu KL, Zhang JX, Liu XC, Zeng SJ, Yu ZM, Zhang XH, Teixeira da Silva JA, Deng RF, Tan JW (2017) Cytochemical localization of polysaccharides in Dendrobium officinale and the involvement of DoCSLA6 in the synthesis of mannan polysaccharides. Front Plant Sci 8:173

    Article  PubMed  PubMed Central  Google Scholar 

  • He CM, Teixeira da Silva JA, Tan JW, Zhang JX, Pan XP, Li MZ, Luo JP, Duan J (2017) A genome-wide identification of the WRKY genes and a survey of potential WRKY target genes in Dendrobium officinale. Sci Rep 7:9200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He TB, Huang YP, Yang L, Liu TT, Gong WY, Wang XJ, Sheng J, Hu JM (2016) Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale. Int J Biol Macromol 83:34–41

    Article  CAS  PubMed  Google Scholar 

  • He WB (2013) Practice and exploration on quality promotion of Dendrobium officinale industry in Zhejiang province. Chin Pharm J 48:1693–1696

    Google Scholar 

  • Hsieh YY, Chien C, Liao SKS, Liao SF, Huang WT, Yang WB, Lin CC, Cheng TJR, Chang CC, Fang JM, Wong CH (2008) Structure and bioactivity of polysaccharides in medicinal plant Dendrobium huoshanense. Bioorgan Med Chem 16:6054–6068

    Article  CAS  Google Scholar 

  • Huang L, Takahashi R, Kobayashi S, Kawase T, Nishinari K (2002) Gelation behavior of native and acetylated konjac glucomannan. Biomacromolecules 3:1296–1303

    Article  CAS  Google Scholar 

  • Huang KW, Li YR, Tao SC, Wei G, Huang YC, Chen DF, Wu CF (2016) Purification, characterization and biological activity of polysaccharides from Dendrobium officinale. Molecules 21:701

    Article  CAS  PubMed Central  Google Scholar 

  • Hua YF, Zhang M, Fu CX, Chen ZH, Chan GYS (2004) Structural characterization of a 2-O-acetylglucomannan from Demdrobium officinale stem. Carbohyd Res 339:2219–2224

    Article  CAS  Google Scholar 

  • Jia X, Sun CS, Zuo YC, Li GY, Li GB, Ren LY, Chen GL (2016) Integrating transcriptomics and metabolomics to characterize the response of Astragalus membranaceus Bge. var. mongolius (Bge.) to progressive drought stress. BMC Genomics 17:188

  • Jiang LM, Nie SP, Huang DF, Fu ZH, Xie MY (2018) Acetylation modification improves immunoregulatory effect of polysaccharide from seeds of Plantago asiatica L. J Chem 2018:3082026. https://www.hindawi.com/journals/jchem/2018/3082026/

  • Jin XH, Chen SC, Luo YB (2009) Taxonomic revision of Dendrobium monififorme complex (Orchidaceae). Sci Hortic 120:143–145

    Article  Google Scholar 

  • Jin YY, Fang CW, Yang QQ, Gao XM, Zhang CB, Zhang MY, Wang W, Wang L (2013) Investigation on wild resources of Dendrobium officinale distribution and ecological environment in Anhui. Chin J Chin Master Med 38:4024–4027

    Google Scholar 

  • Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Puhler A, Ielpi L (1998) Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Teng QH, Zhong RQ, Ye ZH (2011) The four Arabidopsis REDUCED WALL ACETYLATION genes are expressed in secondary wall-containing cells and required for the acetylation of xylan. Plant Cell Physiol 52:1289–1301

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ye T, Wu XF, Chen J, Wang SS, Lin LF, Li B (2014) Preparation and characterization of heterogeneous deacetylated konjac glucomannan. Food Hydrocolloid 40:9–15

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo QL, Tang ZH, Zhang XF, Zhong YH, Yao SZ, Wang LS, Lin CW, Luo X (2016) Chemical properties and antioxidant activities of a water-soluble polysaccharide from Dendrobium officinale. Int J Biol Macromol 89:219–227

    Article  CAS  PubMed  Google Scholar 

  • Mai CV, Drzewiecka K, Jeleń H, Narożna D, Sobkowiak RR, Kęsy J, Wieczorek JF, Gabryś B, Morkuns I (2014) Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci 221–222:1–12

    Article  CAS  PubMed  Google Scholar 

  • Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S, Rautengarten C, Cherk C, Marcus SE, Somerville S, Pauly M, Knox JP, Sakuragi Y, Scheller HV (2011) Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol 155:1068–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Pawar PMA, Ratke C, Balasubramanian VK, Chong SL, Gandla ML, Adriasola M, Sparrman T, Hedenstrӧm M, Szwaj K, Derba-Maceluch M et al (2017) Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phyto 214:1491–1505

    Article  CAS  Google Scholar 

  • Penroj P, Mitchell JR, Hill SE, Ganjanagunchorn W (2005) Effect of konjac glucomanan deacetylation on the properties of gels formed from mixture of kappa carrageenan and konjac glucomannan. Carbohyd Polym 59:367–376

    Article  CAS  Google Scholar 

  • Salah F, Ghoul YE, Mahdhi A, Majdoub H, Jarroux N, Sakli F (2017) Effect of the deacetylation degree on the antibacterial and antibiofilm activity of acemannan from Aloe vera. Ind Crop Prod 103:13–18

    Article  CAS  Google Scholar 

  • Schultink A, Naylor D, Dama M, Pauly M (2015) TThe role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation. Plant Physiol 167:1271–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si C, Teixeira da Silva JA, He CM, Yu ZM, Zhao CH, Wang HB, Zhang MZ, Duan J (2020) DoRWA3 from Dendrobium officinale plays an essential role in acetylation of polysaccharides. Int J Mol Sci 21:6250

    Article  CAS  PubMed Central  Google Scholar 

  • Smith BW, Roe JH (1949) A photometric method for the determination of α-amylase in blood and urine, with use of the starch-iodine color. J Biol Chem 179:53–59

    Article  CAS  PubMed  Google Scholar 

  • Stranne M, Ren YF, Fimognari L, Birdseye D, Yan JW, Bardor M, Mollet JC, Komatsu K, Kikuchi J, Scheller HV, Sakuragi Y (2018) TBL10 is required for O-acetylation of pectic rhamnogalacturonan-I in Arabidopsis thaliana. Plant J 96:772–785

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA, Ng TB (2017) The medicinal and pharmaceutical importance of Dendrobium species. Appl Microbiol Biotechnol 101:2227–2239

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Tong W, Yu Q, Li H, Cui WW, Nie SP (2017) Chemical modification and immunoregulatory activity of polysaccharides from Dendrobium officinale. Food Sci 38:155–160

    Google Scholar 

  • Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40:968–978

    Article  CAS  PubMed  Google Scholar 

  • Vojnov AA, Slater H, Daniels MJ, Dow JM (2001) Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant-Microbe Interact 14:768–774

    Article  CAS  PubMed  Google Scholar 

  • Vorhӧlter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rücjert C, Schmid J et al (2008) The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathway involved in xanthan biosynthesis. J Biotech 134:33–45

    Article  CAS  Google Scholar 

  • Wei W, Feng L, Bao WR, Ma DL, Leung CH, Nie SP, Han QB (2016) Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. J Agric Food Chem 64:881–889

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Li ZP, Zhu T, Fung HY, Wong TL, Wen X, Ma DL, Leung CH, Han QB (2017) Anti-fatigue effects of the unique polysaccharide marker of Dendrobium officinale on BALB/c mice. Molecules 22:155

    Article  CAS  PubMed Central  Google Scholar 

  • Xing XH, Cui SW, Nie SP, Phillips GO, Goff HD, Wang Q (2014) Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): part I. Extraction, purification, and partial structural characterization. Bioact Carbohydr Diet Fibre 4:74–83

    Article  CAS  Google Scholar 

  • Xing XH, Cui SW, Nie SP, Phillips GO (2015) Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): part II. Fine structure of O-acetylated residues. Carbohyd Polym 117:422–433

    Article  CAS  Google Scholar 

  • Xiong GY, Cheng K, Pauly M (2013) Xylan O-acetylation impacts xylem development and enzymatic recalcitrance as indicated by Arabidopsis mutant tbl29. Mol Plant 6:1373–1375

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Wang X, Liu H, Tian Y, Lian JM, Yang RJ (2015) The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant 8:922–934

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yoo CG, Winkeler KA, Collins CM, Hinchee MAW, Jawdy SS, Gunter LE, Engle NL, Pu YQ, Yang XH et al (2017) Overexpression of a domain of unknown function 231-containing protein increase O-xylan acetylation and cellulose biosynthesis in Populous. Biotechnol Biofuels 10:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Yuan YX, Teng Q, Zhong RQ, Ye ZH (2013) The Arabidopsis DUF231 domain-containing protein ESK1 mediates 2-O-and 3-O-acetylation of xylosyl residues in xylan. Plant Cell Physiol 54:1186–1199

    Article  CAS  PubMed  Google Scholar 

  • Yuan YX, Teng Q, Zhong RQ, Haghigat M, Richardson EA, Ye ZH (2016) Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition. PLoS ONE 1:e0146460

    Article  CAS  Google Scholar 

  • Yuan YX, Teng Q, Zhong RQ, Ye ZH (2016) Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Sci 243:120–130

    Article  CAS  PubMed  Google Scholar 

  • Yuan YX, Teng Q, Zhong RQ, Ye ZH (2016) TBL3 and TBL31, two Arabidopsis DUF231 doamin proteins, are required for 3-O-monoacetylation of xylan. Plant Cell Physiol 57:35–45

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZQ, Zhang JY, Liu T (2017) Enhancement of polysaccharides accumulation in Dendrobium officinale by exogenously applied methyl jasmonate. Biol Plant 61:438–444

    Article  CAS  Google Scholar 

  • Yu ZM, He CM, Teixeira da Silva JA, Luo JP, Yang ZY, Duan J (2018) The GDP-mannose transporter gene (DoGMT) from Dendrobium officinale is critical for mannan biosynthesis in plant growth and development. Plant Sci 277:43–54

    Article  CAS  PubMed  Google Scholar 

  • Yu ZM, Zhang GH, Teixeira da Silva JA, Yang ZY, Duan J (2019) The β-1,3-galactosetransferase gene DoGALT2 is essential for stigmatic mucilage production in Dendrobium officinale. Plant Sci 287:110179

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zhao MM, Zhang DW, Guo SX (2013) Reference gene selection for real-time quantitative PCR analysis of Dendrobium officinale. Chin Pharm J 48:1664–1668

    CAS  Google Scholar 

  • Zhang SB, Zhou KY, Zhang Z, Lu RR, Li X, Li XH (2015) Study on suitable harvest time of Dendrobium officinale in Yunnan province. Chin J Chin Master Med 40:3549–3552

    Google Scholar 

  • Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Youshida K, Zhang LS, Chang SB, Chen F, et al (2016) The Dendrobium catenatum Lindl. Genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 6:19029

  • Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ et al (2017) The Apostasia genome and the evolution of orchids. Nature 549:379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZH, Zhang DD, Dou MM, Li ZB, Zhang J, Zhao XY (2016) Dendrobium officinale Kimura et Migo attenuates diabetic cardiomyopathy through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced mice. Biomed Pharmacother 84:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Zhan XR, Liao XY, Luo XJ, Zhu YJ, Feng SG, Yu CN, Lu JJ, Shen CJ, Wang HZ (2018) Comparative metabolomic and proteomic analysis reveal the regulation mechanism underlying MeJA-induced bioactive compound accumulation in cutleaf groundcherry (Physalis angulata L.) hairy roots. J Agric Food Chem 66:6336–6347

    Article  CAS  PubMed  Google Scholar 

  • Zhong RQ, Cui DT, Ye ZH (2017) Regiospecific acetylation of xylan is mediated by a group of DUF231-containg O-acetyltransferases. Plant Cell Physiol 58:2126–2138

    Article  CAS  PubMed  Google Scholar 

  • Zhong RQ, Cui DT, Ye ZH (2018a) A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan. PLoS ONE 13:e0194532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong RQ, Cui DT, Ye ZH (2018b) Members of DUF231 family are O-acetyltransferases catalyzing 2-O-and 3-O-acetylation of mannan. Plant Cell Physiol 59:2339–2349

    CAS  PubMed  Google Scholar 

  • Zhong RQ, Cui DT, Ye ZH (2018c) Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains. Planta 248:1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Sun Y, Zhang BC, Mansoori N, Wan JX, Liu Y, Wang ZW, Shi YZ, Zhou YH, Zheng SJ (2014) TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in arabisopsis. Plant Physiol 166:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ming-zhi Li and Nanjing Genepioneer Co. Ltd. for the hummersearch analysis.

Funding

This research was funded by the project “Cultivation of new varieties of Dendrobium officinale in Guangdong Province” (Y 334041001).

Author information

Authors and Affiliations

Authors

Contributions

JD designed the research. CS wrote the manuscript and performed all the experiments. CH and ZY helped to collect and analyze the data. CH helped to draw the figures. JATdS aided with data analysis, interpretation of results, and co-wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jun Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Hanns H. Kassemeyer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3662 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, C., He, C., Teixeira da Silva, J.A. et al. Metabolic accumulation and related synthetic genes of O-acetyl groups in mannan polysaccharides of Dendrobium officinale. Protoplasma 259, 641–657 (2022). https://doi.org/10.1007/s00709-021-01672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01672-8

Keywords

Navigation