Skip to main content
Log in

Existence of periodic solution for a class of beam equation via variational methods

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we study the existence of periodic solution for a class of beam equation via variational methods. The main difficulty is associated with the fact that the energy functional is strongly indefinite and it is not well defined in the natural space to apply variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch, T., Ding, Y.: Periodic solutions of superlinear beam and membrane equations with perturbations from symmetry. Nonlinear Anal. 44, 727–748 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T., Ding, Y.: On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313, 15–37 (1999)

    Article  MathSciNet  Google Scholar 

  3. Chang, K.C., Sanchez, L.: Nontrivial periodic solutions of a nonlinear beam equation. Math. Methods Appl. Sci. 4, 194–205 (1982)

    Article  MathSciNet  Google Scholar 

  4. Cavalcante, M.P., Alves, C.O., Medeiros, E.: A semilinear Schrödinger equation with zero on the boundary of the spectrum and exponential growth in \({\mathbb{R}} ^2\). Commun. Contemp. Math. 21, 1850037 (2019)

    Article  MathSciNet  Google Scholar 

  5. Feireisl, E.: Time periodic solutions to a semilinear beam equation. Nonlinear Anal. Theory Methods Appl. 12, 279–290 (1988)

    Article  MathSciNet  Google Scholar 

  6. Feireisl, E.: On the existence of infinitely many periodic solutions for an equation of a rectangular thin plate. Czechoslov. Math. J. 37(2), 334–341 (1987)

    Article  MathSciNet  Google Scholar 

  7. Holmes, P., Marsden, J.: A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. Ration. Mech. Anal. 76, 135–165 (1981)

    Article  MathSciNet  Google Scholar 

  8. Liu, J.Q.: Nonlinear vibration of a beam. Nonlinear Anal. TMA 13, 1139–1148 (1989)

    Article  MathSciNet  Google Scholar 

  9. Marsden, J.: Lecture on Geometric Methods in Mathematical Physics, CBMS, vol. 37. SIAM, Philadelphia (1981)

    Google Scholar 

  10. Pankov, A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  Google Scholar 

  11. Schechter, M.: Nonlinear Schrödinger operators with zero in the spectrum. Z. Angew. Math. Phys. 66, 2125–2141 (2015)

    Article  MathSciNet  Google Scholar 

  12. Schechter, M., Zou, W.: Weak linking theorems and Schrödinger equations with critical Sobolev exponent. ESAIM Control Optim. Calc. Var. 9, 601–619 (2003)

    Article  MathSciNet  Google Scholar 

  13. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  Google Scholar 

  14. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Vienna (2010)

    MATH  Google Scholar 

  15. Szilard, R.: Theory and Analysis of Plates. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudianor O. Alves.

Additional information

Communicated by Ansgar Jüngel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C.O. Alves was partially supported by CNPq/Brazil 304804/2017-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., de Araújo, B.S.V. & Nóbrega, A.B. Existence of periodic solution for a class of beam equation via variational methods. Monatsh Math 197, 227–256 (2022). https://doi.org/10.1007/s00605-021-01583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01583-z

Keywords

Mathematics Subject Classification

Navigation