Skip to main content
Log in

Fluctuation and entropy in spectrally constrained random fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the statistical properties of translation invariant random fields (including point processes) on Euclidean spaces (or lattices) under constraints on their spectrum or structure function. An important class of models that motivate our study are hyperuniform and stealthy hyperuniform systems, which are characterised by the vanishing of the structure function at the origin (resp., vanishing in a neighbourhood of the origin). We show that many key features of two classical statistical mechanical measures of randomness—namely, fluctuations and entropy, are governed only by some particular local aspects of their structure function. We obtain exponents for the fluctuations of the local mass in domains of growing size, and show that spatial geometric considerations play an important role—both the shape of the domain and the mode of spectral decay. In doing so, we unveil intriguing oscillatory behaviour of spatial correlations of local masses in adjacent box domains. We describe very general conditions under which we show that the field of local masses exhibit Gaussian asymptotics, with an explicitly described limit. We further demonstrate that stealthy hyperuniform systems with joint densities exhibit degeneracy in their asymptotic entropy per site. In fact, our analysis shows that entropic degeneracy sets in under much milder conditions than stealthiness, as soon as the structure function fails to be logarithmically integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aizenman, M., Martin, P.A.: Structure of Gibbs states of one dimensional coulomb systems. Commun. Math. Phys. 78(1), 99–116 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aizenman, M., Martin, P.A.: Structure of Gibbs states of one dimensional Coulomb systems. Commun. Math. Phys. 78(1), 99–116 (1980)

  3. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1992). Reprint of the 1972 edition

  4. Baake, M., Birkner, M., Moody, R.V.: Diffraction of stochastic point sets: explicitly computable examples. Commun. Math. Phys. 293(3), 611 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Beck, J., Chen, W.L.: Irregularities of Distribution, Volume 89 of Cambridge Tracts in Mathematics (1987)

  6. Beck, J.: Irregularities of distribution. I. Acta Math. 159, 1–49 (1987)

    Article  MathSciNet  Google Scholar 

  7. Burcaw, L.M., Fieremans, E., Novikov, D.S.: Mesoscopic structure of neuronal tracts from time-dependent diffusion. NeuroImage 114, 18–37 (2015)

    Article  Google Scholar 

  8. Bufetov, A.I., Qiu, Y.: \(J\)-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence. Math. Ann. 371(1–2), 127–188 (2018)

    Article  MathSciNet  Google Scholar 

  9. Buckley, J., Sodin, M.: Fluctuations of the increment of the argument for the Gaussian entire function. J. Stat. Phys. 168(2), 300–330 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bufetov, A.I.: Rigidity of determinantal point processes with the airy, the Bessel and the gamma kernel. Bull. Math. Sci. 6(1), 163–172 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chertkov, E., DiStasio Jr., R.A., Zhang, G., Car, R., Torquato, S.: Inverse design of disordered stealthy hyperuniform spin chains. Phys. Rev. B 93(6), 064201 (2016)

    Article  ADS  Google Scholar 

  12. Costin, O., Lebowitz, J.L.: Gaussian fluctuation in random matrices. Phys. Rev. Lett. 75(1), 69 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dorlas, T.C., Rebenko, A.L., Savoie, B.: Correlation of clusters: partially truncated correlation functions and their decay. arXiv preprint arXiv:1811.12342 (2018)

  14. Degl’Innocenti, R., Shah, Y.D., Masini, L., Ronzani, A., Pitanti, A., Ren, Y., Jessop, D.S., Tredicucci, A., Beere, H.E., Ritchie, D.A.: Thz quantum cascade lasers based on a hyperuniform design. In: Quantum Sensing and Nanophotonic Devices XII, vol. 9370, p. 93700A. International Society for Optics and Photonics (2015)

  15. Edwards, S.F., Lenard, A.: Exact statistical mechanics of a one-dimensional system with coulomb forces. II. The method of functional integration. J. Math. Phys. 3(4), 778–792 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  16. Epstein, C.L.: Introduction to the Mathematics of Medical Imaging, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Book  Google Scholar 

  17. Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  18. Florescu, M., Torquato, S., Steinhardt, P.J.: Designer disordered materials with large, complete photonic band gaps. Proc. Nat. Acad. Sci. 106(49), 20658–20663 (2009)

    Article  ADS  Google Scholar 

  19. Ghosh, S.: Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields 163(3–4), 643–665 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ghosh, S., Lebowitz, J.: Number rigidity in superhomogeneous random point fields. J. Stat. Phys. 166(3–4), 1016–1027 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ghosh, S., Lebowitz, J.L.: Fluctuations, large deviations and rigidity in hyperuniform systems: a brief survey. Indian J. Pure Appl. Math. 48(4), 609–631 (2017)

    Article  MathSciNet  Google Scholar 

  22. Ghosh, S., Lebowitz, J.L.: Generalized stealthy hyperuniform processes: maximal rigidity and the bounded holes conjecture. Commun. Math. Phys. 363(1), 97–110 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Glasner, E.: Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol. 101. American Mathematical Society, Providence (2003)

    Book  Google Scholar 

  24. Goldstein, S., Lebowitz, J.L., Speer, E.R.: Large deviations for a point process of bounded variability. Markov Process. Relat. Fields 12(2), 235–256 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Ghosh, S., Peres, Y.: Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues. Duke Math. J. 166(10), 1789–1858 (2017)

    Article  MathSciNet  Google Scholar 

  26. Hexner, D., Chaikin, P.M., Levine, D.: Enhanced hyperuniformity from random reorganization. Proc. Nat. Acad. Sci. 114(17), 4294–4299 (2017)

    Article  ADS  Google Scholar 

  27. Hough, B.J., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence (2009)

  28. Hexner, D.: Hyperuniformity of critical absorbing states. Phys. Rev. Lett. 114(11), 110602 (2015)

    Article  ADS  Google Scholar 

  29. Haberko, J., Muller, N., Scheffold, F.: Direct laser writing of three-dimensional network structures as templates for disordered photonic materials. Phys. Rev. A 88(4), 043822 (2013)

    Article  ADS  Google Scholar 

  30. Ibragimov, I.A.: A theorem of Gabor Szegö. Mat. Zametki 3, 693–702 (1968)

    MathSciNet  MATH  Google Scholar 

  31. Jiao, Y., Lau, T., Hatzikirou, H., Meyer-Hermann, M., Corbo, J.C., Torquato, S.: Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E 89(2), 022721 (2014)

    Article  ADS  Google Scholar 

  32. Jancovici, B., Lebowitz, J.L., Manificat, G.: Large charge fluctuations in classical coulomb systems. J. Stat. Phys. 72(3–4), 773–787 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  33. Jiao, Y., Torquato, S.: Maximally random jammed packings of platonic solids: hyperuniform long-range correlations and isostaticity. Phys. Rev. E 84(4), 041309 (2011)

    Article  ADS  Google Scholar 

  34. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  35. Kiro, A., Nishry, A: Rigidity for zero sets of Gaussian entire functions. Electron. Commun. Probab. 24, 1–9 (2019)

  36. Lebowitz, J.L.: Charge fluctuations in coulomb systems. Phys. Rev. A 27(3), 1491 (1983)

    Article  ADS  Google Scholar 

  37. Linnik: , I. J.: a multidimensional analogue of G. Szegho’s limit theorem. Izv. Akad. Nauk SSSR Ser. Mat. 39(6), 1393–1403, 1439 (1975)

  38. Lukacs, E.: Characteristic functions. Griffin’s Statistical Monographs & Courses, No. 5. Hafner Publishing Co., New York (1960)

  39. Marcotte, E., Stillinger, F., Torquato, S.: Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition. J. Chem. Phys. 138 (2013)

  40. Martin, P.A., Yalcin, T.: The charge fluctuations in classical coulomb systems. J. Stat. Phys. 22(4), 435–463 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  41. Nazarov, F., Sodin, M.: Correlation functions for random complex zeroes: strong clustering and local universality. Commun. Math. Phys. 310(1), 75–98 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  42. Simon, B.: The sharp form of the strong Szego theorem. In: Geometry, Spectral Theory, Groups, and Dynamics, Volume 387 of Contemporary Mathematics, pp. 253–275. American Mathematical Society, Providence (2005)

  43. Szegő, G.: On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplémentaire), 228–238 (1952)

  44. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  Google Scholar 

  45. Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68(4), 041113, (2003)

  46. Torquato, S., Zhang, G., Stillinger, F.H.: Ensemble theory for stealthy hyperuniform disordered ground states. Phys. Rev. X 5(2), 021020 (2015)

  47. Zhang, G., Stillinger, F.H., Torquato, S.: Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations. Phys. Rev. E 92(2), 022119 (2015)

  48. Zhang, G., Stillinger, F.H., Torquato, S.: Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases. Phys. Rev. E 92(2), 022120 (2015)

  49. Zhang, G., Stillinger, F.H.: Transport, geometrical, and topological properties of stealthy disordered hyperuniform two-phase systems. J. Chem. Phys. 145(24), 244109 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research of Kartick Adhikari was supported by Zeff Fellowship, Viterbi Fellowship and Israel Science Foundation, Grant 2539/17 and Grant 771/17. The work of Subhroshekhar Ghosh was supported in part by the MOE grants R-146-000-250-133 and R-146-000-312-114. The work of Joel L. Lebowitz was supported by AFOSR Grant FA9550-16-1-0037. We thank the referees for insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhroshekhar Ghosh.

Additional information

Communicated by H.Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the sake of completeness, the Riemann-Lebesgue lemma is stated below, see [Eps08, Lemma 4.2.1].

Lemma 4

(Riemann Lebesgue lemma). If f is \(L^1\) integrable on \({\mathbb {R}}^d\), that is to say, if the Lebesgue integral of |f| is finite, then the Fourier transform of f satisfies

$$\begin{aligned} \hat{f}(z):=\int _{{\mathbb {R}}^d} f(x) \exp (-iz \cdot x)\,dx \rightarrow 0\text { as } |z|\rightarrow \infty . \end{aligned}$$

Theorem 9

([Kat04, P. 152]). If \(e^{P(\xi )}\) is the Fourier-Stieltjes transform of a positive measure, with P a polynomial, then \(\deg P\le 2\).

For the sake of completeness, the proof of Lemma 3 is given below.

Proof of Lemma 3

Let g be the joint density function of the random vector G. Then g is given by

$$\begin{aligned} g(x)=\frac{1}{\det (\sqrt{2\pi \Sigma _d})}e^{-\frac{1}{2}x^t\Sigma _d^{-1} x}, \end{aligned}$$

where \(\Sigma _d=(\sigma (i,j))_{d\times d}\) with \(\sigma (i,j)=\text{ E }[X_iX_j]\) and \(x=(x_1,\ldots , x_d)\). Let f be the continuous density function of the random variable X. The relative entropy (also known as Kullback-Leibler divergence) between f and g is given by

$$\begin{aligned} 0\le D_{KL }(f\Vert g)=\int f(x)\log (\frac{f(x)}{g(x)})dx=-h(X)-\int f(x)\log (g(x))dx. \end{aligned}$$

Note that we have

$$\begin{aligned} \log (g(x))=-\frac{1}{2}\log \det (2\pi \Sigma _d)-\frac{1}{2}x^t\Sigma _d^{-1} x. \end{aligned}$$

Which implies that, as \(\text{ E }[X_iX_j]=\text{ E }[G_iG_j]\) for all ij,

$$\begin{aligned} \int _{-\infty }^\infty f(x)\log (g(x))dx&=-\frac{1}{2}\log \det (2\pi \Sigma _d)-\frac{1}{2}\int f(x)(x^t\Sigma _d^{-1} x)dx \\&=-\frac{1}{2}\log \det (2\pi \Sigma _d)-\frac{1}{2}\int g(x)(x^t\Sigma _d^{-1} x)dx=-h(G). \end{aligned}$$

Thus we have \( h(G)-h(X)\ge 0. \) Moreover, the properties of Kullback-Leibler divergence imply that \(h(X)=h(G)\) when \(f=g\). Hence the result. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, K., Ghosh, S. & Lebowitz, J.L. Fluctuation and entropy in spectrally constrained random fields. Commun. Math. Phys. 386, 749–780 (2021). https://doi.org/10.1007/s00220-021-04150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04150-7

Navigation