Skip to main content

Advertisement

Log in

PROCESSING AND CHARACTERIZATION OF LOW-THERMAL CONDUCTIVITY, CLAY-BASED, CERAMIC MEMBRANES FOR FILTERING DRINKING WATER

  • Published:
Clays and Clay Minerals

Abstract

Drinking-water supply remains a significant challenge in tropical areas; to help meet this challenge, the purpose of the present study was to manufacture low-thermal conductivity ceramic membranes suitable for the retention/removal of particles found in non-potable water. These membranes with significant chemical and mechanical resistances were developed from Cameroonian clays, cassava starch, and bovine bone ash. Up to 30% of Cassava starch and bovine bone ash were added to the membrane as porogens (materials used to make pores in membranes). Membranes were manufactured by uniaxial pressing, drying at 105°C, and sintering at 1150°C for 2 h. The effects of various types of porogen on the thermal behavior, microstructure, flexural strength, porosity, and permeability of ceramic membranes were investigated to determine possible applications of those membranes for water filtration in the tropics. The thermal conductivity of membranes produced without a pore-forming agent (SM0) was greater (0.54 Wm–1K–1) than those produced with starch (SM1 and SM3) (0.45–0.40 Wm–1K–1) or bovine bone ash (SM2) (0.49 Wm–1K–1). The total porosity of SM0s (30.72%) was less than those of starch and bovine bone membranes (37.87–45.99%). The average pore size (0.04 μm) of SM2 membranes was the smallest: SM0 (0.09 μm), SM1 (0.10 μm), and SM3 (0.07 μm). The maximum pore size was 0.37 μm, indicating that membranes contain mesopores and macropores. The flexural strengths of SM1 and SM3 membranes (8.85 and 6.97 MPa, respectively) were less than those of SM2 (10.53 MPa) and SM0 (10.28 MPa), and water permeability from 108 L/h·m2 bar to 2198 L/h·m2 bar. Filtered water properties showed that pH values were upgraded from 5.9 to 7, the turbidity reduction rates and levels were >94% and <0.65 NTU. Particle-size distributions moved from 1150–39,000 nm in polluted water to <2 nm in filtered water. Judging by the sizes of particles present in filtered waters, these membranes may be suitable for elimination of viruses, pigments, proteins, colloids, and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  • Abbasi, M., Mirfendereski, M., Nikbakht, M., Golshenas, M., & Mohammadi, T. (2010). Performance study of mullite and mullite–alumina ceramic MF membranes for oily wastewaters treatment. Desalination, 259, 169–178.

    Article  Google Scholar 

  • Achiou, B., Elomari, H., Ouammou, M., Albizane, A., Bennazha, J., Younssi, S. A., El Amrani, I. E., & Aaddane, A. (2016). Elaboration and characterization of flat ceramic microfiltration membrane made from natural Moroccan pozzolan (Central Middle Atlas). Journal of Materials and Environmental Science, 7, 196–204.

    Google Scholar 

  • Alghamdi, H., Dakhane, A., Alum, A., Abbaszadegan, M., Mobasher, B., & Neithalath, N. (2018). Synthesis and characterization of economical, multi-functional porous ceramics based on abundant aluminosilicates. Materials Design, 152, 10–21.

    Article  Google Scholar 

  • Ali, B. M., Hamdi, N., Rodriguez, M. A., Mahmoudi, K., & Srasra, E. (2018). Preparation and characterization of new ceramic membranes for ultra filtration. Ceramics International, 44, 2328–2335.

    Article  Google Scholar 

  • Almandoz, M. C., Marchese, J., Prádanos, P., Palacio, L., & Hernández, A. (2004). Preparation and characterization of non-supported microfiltration membranes from aluminosilicates. Journal of Membrane Science, 241, 95–103.

    Article  Google Scholar 

  • Amin, S. K., Abdallah, H. A. M., Roushdy, M. H., & El-Sherbiny, S. A. (2016). An overview of production and development of ceramic membranes. International Journal of Applied Engineering Research, 11, 7708–7721.

    Google Scholar 

  • Arzani, M., Reza, H. R., Sheikhi, M., Mohammadi, T., & Bakhtiari, O. (2018). Ceramic monolith as micro filtration membrane : Preparation, characterization and performance evaluation. Applied Clay Science, 161, 456–463.

    Article  Google Scholar 

  • Ashaghi, K. S., Ebrahimi, M., & Czermak, P. (2007). Ceramic ultra-and nanofiltration membranes for oilfield produced water treatment: A mini review. The Open Environmental Journal, 1, 1–8.

    Article  Google Scholar 

  • Bacchin, P. (2005). Principes de base des Technologies à Membranes, in Maghrébine, 2ème Ecole d’Eté Franco- (ed.). Sciences et Technologies à Membranes, Monastir, Tunisia.

  • Baraka, N. El., Saffaj, N., Mamouni, R., Laknifli, A., Younssi, S.A., Albizane, A., & El Haddad, M. (2012). Development and characterization of flat membrane supports based on Moroccan clay, in Association Franco-Magrhébine, VII èmes Journées d’Etudes Techniques, p. 8.

  • Barea, R., Osendi, M. I., Ferreira, J. M. F., & Miranzo, P. (2005). Thermal conductivity of highly porous mullite material. Acta Materialia, 53, 3313–3318.

    Article  Google Scholar 

  • Barrouk, I., Alami, Y. S., Kabbabi, A., Persin, M., Albizane, A., & Tahiri, S. (2015). Elaboration and characterization of ceramic membranes made from natural and synthetic phosphates and their application in filtration of chemical pretreated textile effluent. Journal of Materials and Environmental Science, 6, 2190–2197.

    Google Scholar 

  • Belibi, B. P., Cerneaux, S., Rivallin, M., Ngassoum, M. B., & Cretin, M. (2014). Elaboration of low-cost ceramic membrane based on local material for microfiltration of particle from drinking water. Journal of Applicable Chemistry, 3, 1991–2003.

    Google Scholar 

  • Belibi, B. P., Nguemtchouin, M. M. G., Rivallin, M., Ndi Nsami, J., Sieliechi, J., Cerneaux, S., Ngassoum, M. B., & Cretin, M. (2015). Microfiltration ceramic membranes from local Cameroonian clay applicable to water treatment. Ceramics International, 41, 2752–2759.

    Article  Google Scholar 

  • Bouzerara, F., Harabi, A., Ghouil, B., Medjemem, N., Boudaira, B., & Condom, S. (2012). Elaboration and properties of zirconia microfiltration membranes. Procedia Engineering, 33, 278–284.

    Article  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309–319.

    Article  Google Scholar 

  • Dong, Y., Feng, X., Dong, D., Wang, S., Yang, J., Gao, J., Liu, X., & Meng, G. (2007). Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports. Journal of Membrane Science, 304, 65–75.

    Article  Google Scholar 

  • Dong, Y., Hampshire, S., Zhou, J., Lin, B., & Ji, Z. (2010). Recycling of fly ash for preparing porous mullite membrane supports with titania addition. Journal of Hazardous Materials, 180, 173–180.

    Article  Google Scholar 

  • Dong, Y., Lin, B., Zhou, J., Zhang, X., Ling, Y., Liu, X., Meng, G., & Hampshire, S. (2011). Corrosion resistance characterization of porous alumina membrane supports. Materials Characterization, 62, 409–418.

    Article  Google Scholar 

  • Ebadzadeh, T., Behnamghader, A., & Nemati, R. (2011). Preparation of porous hydroxyapatite ceramics containing mullite by reaction sintering of clay, alumina and hydroxyapatite. Ceramics International, 37, 2887–2889.

    Article  Google Scholar 

  • Elomari, H., Achiou, B., Karim, A., Ouammou, M., Albizane, A., Bennazha, J., Alami, Y. S., & Elamrani, I. (2017). Influence of starch content on the properties of low cost microfiltration membranes. Journal of Asian Ceramic Societies, 5, 313–319.

    Article  Google Scholar 

  • Eom, J.-H., Yeom, H. J., Kim, Y. W., & Song, I. H. (2015). Ceramic membranes prepared from a silicate and clay-mineral mixture for treatment of oily wastewater. Clays and Clay Minerals, 63, 222–234.

    Article  Google Scholar 

  • Gao, N., Fan, Y., Quan, X., Cai, Y., & Zhou, D. (2016). Modified ceramic membranes for low fouling separation of water-in-oil emulsions. Journal of Materials Science, 51, 6379–6388.

    Article  Google Scholar 

  • Garmsiri, E., Rasouli, Y., Abbasi, M., & Izadpanah, A. A. (2017). Chemical cleaning of mullite ceramic micro filtration membranes which are fouled during oily wastewater treatment. Journal of Water Process Engineering, 19, 81–95.

    Article  Google Scholar 

  • Gong, L., Wang, Y., Cheng, X., Zhang, R., & Zhang, H. (2014). Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation. Journal of Porous Materials, 21, 15–21.

    Article  Google Scholar 

  • Gregorová, E., Živcová, Z., & Pabst, W. (2009). Porous ceramics made using potato starch as a pore-forming agent. Fruit, Vegetable and Cereal Science and Biotechnology, 3, 115–127.

    Google Scholar 

  • Harabi, A., Guechi, A., & Condom, S. (2012). Production of supports and filtration membranes from Algerian kaolin and limestone. Procedia Engineering, 33, 220–224.

    Article  Google Scholar 

  • He, R., Qu, Z., & Cheng, X. (2016). Effects of starch addition amount on microstructure, mechanical properties and room temperature thermal conductivity of porous Y2SiO5 ceramics. Ceramics International, 42, 2257–2262.

    Article  Google Scholar 

  • Hubadillah, S. K., Othman, M. H. D., Matsuura, T., Rahman, M. A., Harun, Z., Jaafar, J., & Nomura, M. (2018). Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review. Ceramics International, 44, 4538–4560.

    Article  Google Scholar 

  • Joschek, S., Nies, B., Krotz, R., & Göpferich, A. (2000). Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials, 21, 1645–1658.

    Article  Google Scholar 

  • Khattab, R. M., Wahsh, M. M. S., & Khalil, N. M. (2012). Preparation and characterization of porous alumina ceramics through starch consolidation casting technique. Ceramics International, 38, 4723–4728.

    Article  Google Scholar 

  • Kitiwan, M., & Atong, D. (2010). Effects of porous alumina support and plating time on electroless plating of palladium membrane. Journal of Materials Science & Technology, 26, 1148–1152.

    Article  Google Scholar 

  • Kumar, C. M., Roshni, M., & Vasanth, D. (2019). Treatment of aqueous bacterial solution using ceramic membrane prepared from cheaper clays: A detailed investigation of fouling and cleaning. Journal of Water Process Engineering, 29, 1–11.

    Article  Google Scholar 

  • Levänen, E., & Mäntylä, T. (2002). Effect of sintering temperature on functional properties of alumina membranes. Journal of the European Ceramic Society, 22, 613–623.

    Article  Google Scholar 

  • Li, S., Wang, C., & Zhou, J. (2013). Effect of starch addition on microstructure and properties of highly porous alumina ceramics. Ceramics International, 39, 8833–8839.

    Article  Google Scholar 

  • Liu, X., Zhang, Q., Zhang, H., Jiang, Y., & He, Y. (2016). Development and characterization of microporous Ti3SiC2 ceramic membranes for filtration of microorganisms. Journal of Materials Science, 51, 2594–2597.

    Article  Google Scholar 

  • Misrar, W., Loutou, M., Saadi, L., Mansori, M., Waqif, M., & Favotto, C. (2017). Cordierite containing ceramic membranes from smectetic clay using natural organic wastes as pore-forming agents. Journal of Asian Ceramic Societies, 5, 199–208.

    Article  Google Scholar 

  • Mouafon, M., Njoya, D., Hajjaji, M., Njoya, A., Lecomte-Nana, G. L., & Njopwouo, D. (2020). Effect of porogenic agent type and firing temperatures on properties of low-cost microfiltration membranes. Transactions of the Indian Ceramic Society, 79, 1–12.

    Article  Google Scholar 

  • Mouiya, M., Bouazizi, A., Abourriche, A., Benhammou, A., Smith, A., & Hannache, H. (2019). Fabrication and characterization of a ceramic membrane from clay and banana peel powder: Application to industrial wastewater treatment. Materials Chemistry and Physics, 227, 291–301.

    Article  Google Scholar 

  • Nagai, M., & Nishino, T. (1988). Surface conduction of porous hydroxyapatite ceramics at elevated temperatures. Solid State Ionics, 28–30, 1456–1461.

    Article  Google Scholar 

  • Nandi, B. K., Uppaluri, R., & Purkait, M. K. (2008). Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Applied Clay Science, 42, 102–110.

    Article  Google Scholar 

  • Nigay, P. M., Cutard, T., & Nzihou, A. (2017). The impact of heat treatment on the microstructure of a clay ceramic and its thermal and mechanical properties. Ceramics International, 43, 1747–1754.

    Article  Google Scholar 

  • Nivedita, S., & Joseph, S. (2018). Effect of unmodified and modified montmorillonite on the properties of PCL based ultra filtration membrane for water treatment applications. Journal of Water Process Engineering, 21, 61–68.

    Article  Google Scholar 

  • Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., & Njoya, D. (2006). Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125–140.

    Article  Google Scholar 

  • Norhayati, A., Maisarah, B. M., Muhd, A. A., Nurhanna, Z., & Ahmad, I. F. (2014). Effect of starch addition on microstructure and strength of ball clay membrane. Jurnal Teknologi (Sciences and Engineering), 69, 117–120.

    Google Scholar 

  • Palacio, L., Bouzerdi, Y., Ouammou, M., Albizane, A., & Bennazha, J. (2009). Ceramic membranes from Moroccan natural clay and phosphate for industrial water treatment. Desalination, 245, 501–507.

    Article  Google Scholar 

  • Pountouenchi, A., Njoya, D., Njoya, A., Rabibisao, D., Mache, J. R., Yongue, R. F., Njopwouo, D., Fagel, N., Pilate, P., & Van Parys, L. (2018). Characterization of clays from the Foumban region (west Cameroon) and evaluation for refractory brick manufacture. Clay Minerals, 53, 447–457.

    Article  Google Scholar 

  • Rekik, S. B., Bouaziz, J., Deratani, A., & Baklouti, S. (2016). Development of an asymmetric ultrafiltration membrane from naturally occurring kaolin clays: Application for the cuttlefish effluents treatment. Journal of Membrane Science & Technology, 6, 1–12.

    Article  Google Scholar 

  • Saffaj, N., Persin, M., Younssi, S. A., Albizane, A., Bouhria, M., Loukili, H., Dach, H., & Larbot, A. (2005). Removal of salts and dyes by low ZnAl2O4 – TiO2 ultrafiltration membrane deposited on support made from raw clay. Separation and Purification Technology, 47, 36–42.

    Article  Google Scholar 

  • Saffaj, N., El Baraka, N., Mamouni, R., Zgou, H., Laknifli, A., Younssi, S. A., Darmane, Y., Aboulkacem, M., & Mokhtari, O. (2013). New bio ceramic support membrane from animal bone. Journal of Microbiology and Biotechnology Research Scholars, 3, 1–6.

    Google Scholar 

  • Sarkar, S., Bandyopadhyay, S., Larbot, A., & Cerneaux, S. (2012). New clay-alumina porous capillary supports for filtration application. Journal of Membrane Science, 392–393, 130–136.

    Article  Google Scholar 

  • Tan, H., Ooi, B. S., & Leo, C. P. (2020). Future perspectives of nanocellulose-based membrane for water treatment. Journal of Water Process Engineering, 37, 1–15.

    Article  Google Scholar 

  • Vida-simiti, I., Jumate, N., Moldovan, V., Thalmaier, G., & Sechel, N. (2012). Characterization of gradual porous ceramic structures obtained by powder sedimentation. Journal of Materials Science & Technology, 28, 362–366.

    Article  Google Scholar 

  • Werner, J., Besser, B., Brandes, C., Kroll, S., & Rezwan, K. (2014). Production of ceramic membranes with different pore sizes for virus retention. Journal of Water Process Engineering, 4, 201–211.

    Article  Google Scholar 

  • Xavier, L. A., Valadares De Oliveira, T., Klitzke, W., Bellin Mariano, A., Eiras, D., & Bruno Vieira, R. (2019). Influence of thermally modified clays and inexpensive pore-generating and strength improving agents on the properties of porous ceramic membrane. Applied Clay Science, 168, 260–268.

    Article  Google Scholar 

  • Xu, W., Jia, M., & Gong, Z. (2018). Thermal conductivity and tortuosity of porous composites considering percolation of porous network : From spherical to polyhedral pores. Composites Science and Technology, 167, 134–140.

    Article  Google Scholar 

  • Yang, G. C. C., & Tsai, C. (2008). Effects of starch addition on characteristics of tubular porous ceramic membrane substrates. Desalination, 233, 129–136.

    Article  Google Scholar 

  • Zhou, J., Dong, Y., Hampshire, S., & Meng, G. (2011). Utilization of sepiolite in the synthesis of porous cordierite ceramics. Applied Clay Science, 52, 328–332.

    Article  Google Scholar 

  • Zivcova, Z., Gregorová, E., Pabst, W., Smith, D. S., Michot, A., & Poulier, C. (2009). Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. Journal of the European Ceramic Society, 29, 347–353.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of Agence Universitaire de la Francophonie (AUF) and Ceramics Research Instituted (IRCER) of Limoges University.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayirou Njoya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouafon, M., Lecomte-Nana, G.L., Tessier-Doyen, N. et al. PROCESSING AND CHARACTERIZATION OF LOW-THERMAL CONDUCTIVITY, CLAY-BASED, CERAMIC MEMBRANES FOR FILTERING DRINKING WATER. Clays Clay Miner. 69, 339–353 (2021). https://doi.org/10.1007/s42860-021-00131-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00131-y

Keywords

Navigation