Skip to main content
Log in

RANSAC-Based Signal Denoising Using Compressive Sensing

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we present an approach to the reconstruction of signals exhibiting sparsity in a transformation domain, having some heavily disturbed samples. This sparsity-driven signal recovery exploits a carefully suited random sampling consensus (RANSAC) methodology for the selection of a subset of inlier samples. To this aim, two fundamental properties are used: A signal sample represents a linear combination of the sparse coefficients, whereas the disturbance degrades the original signal sparsity. The properly selected samples are further used as measurements in the sparse signal reconstruction, performed using algorithms from the compressive sensing framework. Besides the fact that the disturbance degrades signal sparsity in the transformation domain, no other disturbance-related assumptions are made—there are no special requirements regarding its statistical behavior or the range of its values. As a case study, the discrete Fourier transform is considered as a domain of signal sparsity, owing to its significance in signal processing theory and applications. Numerical results strongly support the presented theory. In addition, the exact relation for the signal-to-noise ratio of the reconstructed signal is also presented. This simple result, which conveniently characterizes the RANSAC-based reconstruction performance, is numerically confirmed by a set of statistical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.S. Ahmad, O. Kukrer, A. Hocanin, Robust recursive inverse adaptive algorithm in impulsive noise. Circuits Syst. Signal Process. 31(2), 703–710 (2012)

    Article  MathSciNet  Google Scholar 

  2. F.R. Avila, L.W.P. Biscainho, Bayesian restoration of audio signals degraded by impulsive noise modeled as individual pulses. IEEE Trans. Audio Speech Lang. Process. 20(9), 2470–2481 (2012). https://doi.org/10.1109/TASL.2012.2203811

    Article  Google Scholar 

  3. T. Blumensath, Sampling and reconstructing signals from a union of linear subspaces. IEEE Trans. Inf. Theory 57(7), 4660–4671 (2011)

    Article  MathSciNet  Google Scholar 

  4. M. Brajovic, S. Stankovic, I. Orovic, M. Dakovic, L. Stankovic, Sparsity-Driven Impulsive Noise Removal: A Discrete Hermite Transform Case Study 27th Telecommunications Forum (TELFOR 2019) (Belgrade, Serbia, 2019)

  5. M. Brajovic, I. Stankovic, M. Dakovic, L. Stankovic, The DCT domain sparsity-assisted detection and recovery of impulsively disturbed samples. Multimedia Tools Appl. (2020). https://doi.org/10.1007/s11042-020-09998-w

    Article  Google Scholar 

  6. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  7. R.E. Carrillo, K.E. Barner, T.C. Aysal, Robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. IEEE J. Select. Top. Signal Process. 4(2), 392–408 (2010)

    Article  Google Scholar 

  8. M. Ciołek , M. Niedźwiecki, Detection of impulsive disturbances in archive audio signals. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA (2017), pp. 671–675. https://doi.org/10.1109/ICASSP.2017.7952240

  9. F. Dadouchi, C. Gervaise, C. Ioana, J. Huillery, J.I. Mars, Automated segmentation of linear time-frequency representations of marine-mammal sounds. J. Acoust. Soc. Am. 134(3), 2546–2555 (2013)

    Article  Google Scholar 

  10. G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)

    Article  MathSciNet  Google Scholar 

  11. I. Djurovic, A WD-RANSAC instantaneous frequency estimator. IEEE Signal Process. Lett. 23(5), 757–761 (2016)

    Article  Google Scholar 

  12. I. Djurovic, V.V. Lukin, M. Simeunovic, B. Barkat, Quasi maximum likelihood estimator of polynomial phase signals for compressed sensed data. AEU-Int. J. Electron. Commun. 68(7), 631–636 (2014)

    Article  Google Scholar 

  13. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  14. K. Egiazarian, A. Foi , V. Katkovnik, Compressed sensing image reconstruction via recursive spatially adaptive filtering, in 2007 IEEE International Conference on Image Processing, San Antonio, TX, pp. 549–552 (2007), https://doi.org/10.1109/ICIP.2007.4379013

  15. M.J. Fadili, J.L. Starck, F. Murtagh, Inpainting and zooming using sparse representations. Comput. J. 52(1), 64–79 (2009)

    Article  Google Scholar 

  16. R. Feng, Q. Du, X. Li, H. Shen, Robust registration for remote sensing images by combining and localizing feature- and area-based methods. ISPRS J. Photogramm. Remote Sens. 151, 15–26 (2019)

    Article  Google Scholar 

  17. P. Flandrin, P. Borgnat, Time-frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6), 2974–2982 (2010)

    Article  MathSciNet  Google Scholar 

  18. F.E. Grubbs, Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)

    Article  Google Scholar 

  19. R. Hu, Y. Fu, Z. Chen, Y. Xiang, J. Tang, A Lorentzian IHT for complex-valued sparse signal recovery. Circuits Syst. Signal Process. 37(2), 862–872 (2018)

    Article  MathSciNet  Google Scholar 

  20. B. Jokanovic, M.G. Amin, Y.D. Zhang, Reducing noise in the time-frequency representation using sparsity promoting kernel design, in Proceedings of SPIE 9109, Compressive Sensing III (91090B) (2014), https://doi.org/10.1117/12.2050894

  21. V. Katkovnik, L. Stankovic, Instantaneous frequency estimation using the Wigner distribution with varying and data driven window length. IEEE Trans. Signal Process. 46(9), 2315–2325 (1998)

    Article  Google Scholar 

  22. N.A. Khan, M. Mohammadi, Reconstruction of non-stationary signals with missing samples using time-frequency filtering. Circuits Syst. Signal Process. 37(8), 3175–3190 (2018)

    Article  MathSciNet  Google Scholar 

  23. T. Kim, Y.J. Im, Automatic satellite image registration by combination of matching and random sample consensus. IEEE Trans. Geosci. Remote Sens. 41(5), 1111–1117 (2003). https://doi.org/10.1109/TGRS.2003.811994

    Article  Google Scholar 

  24. C. Leys, C. Ley, O. Klein, P. Bernard, L. Licata, Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49(4), 764–766 (2013)

    Article  Google Scholar 

  25. J. Matas, O. Chum, Randomized RANSAC with T(d,d) test, in ed. D. Marshall, P. L. Rosin, Proceedings of the British Machine Conference, 43.1–43.10, (BMVA Press 2002), https://doi.org/10.5244/C.16.43.

  26. D. Needell, J.A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  27. M. Niedźwiecki, M. Ciołek, Elimination of Impulsive Disturbances From Archive Audio Signals Using Bidirectional Processing. IEEE Trans. Audio Speech Lang. Process. 21(5), 1046–1059 (2013). https://doi.org/10.1109/TASL.2013.2244090

    Article  Google Scholar 

  28. D. Nister, Preemptive RANSAC for live structure and motion estimation, in Proceedings Ninth IEEE International Conference on Computer Vision Nice, France (2003), pp. 199–206, https://doi.org/10.1109/ICCV.2003.1238341

  29. I. Orovic, V. Papic, C. Ioana, X. Li, S. Stankovic, Compressive sensing in signal processing: algorithms and transform domain formulations. Math. Probl. Eng. (2016)

  30. Z.M. Ramadan, Efficient restoration method for images corrupted with impulse noise. Circuits Syst. Signal Process. 31(4), 1397–1406 (2012)

    Article  MathSciNet  Google Scholar 

  31. A.A. Roenko, V.V. Lukin, I. Djurovic, Two approaches to adaptation of sample myriad to characteristics of S\(\alpha \)S distribution data. Sig. Process. 90(7), 2113–2123 (2010)

    Article  Google Scholar 

  32. M. Ruhland, J. Bitzer, M. Brandt, S. Goetze, Reduction of gaussian, supergaussian, and impulsive noise by interpolation of the binary mask residual. IEEE/ACM Trans. Audio Speech Lang. Process. 23(10), 1680–1691 (2015)

    Article  Google Scholar 

  33. E. Sejdic, A. Cam, L. Chaparro, C. Steele, T. Chau, Compressive sampling of swallowing accelerometry signals using time-frequency dictionaries based on modulated discrete prolate spheroidal sequences. EURASIP J. Adv. Signal Process. 101, 1–14 (2012)

    Google Scholar 

  34. H. Shen, X. Li, L. Zhang, D. Tao, C. Zeng, Compressed sensing-based inpainting of aqua moderate resolution imaging spectroradiometer band 6 using adaptive spectrum-weighted sparse Bayesian dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(2), 894–906 (2014). https://doi.org/10.1109/TGRS.2013.2245509

    Article  Google Scholar 

  35. M. Siu, A. Chan, A Robust Viterbi algorithm against impulsive noise with application to speech recognition. IEEE Trans. Audio Speech Lang. Process. 14(6), 2122–2133 (2006). https://doi.org/10.1109/TASL.2006.872592

    Article  Google Scholar 

  36. I. Stankovic, Recovery of images with missing pixels using a gradient compressive sensing algorithm. arXiv preprint arXiv:1407.3695 (2014)

  37. I. Stankovic, M. Brajovic, M. Dakovic, C. Ioana, L. Stankovic, Quantization in compressive sensing: a signal processing approach. IEEE Access 8, 50611–50625 (2020). https://doi.org/10.1109/ACCESS.2020.2979935

    Article  Google Scholar 

  38. I. Stankovic, I. Orovic, M. Dakovic, S. Stankovic, Denoising of sparse images in impulsive disturbance environment. Multimed. Tools Appl. 77(5), 5885–5905 (2018)

    Article  Google Scholar 

  39. L. Stankovic, A measure of some time-frequency distributions concentration. Sig. Process. 81(3), 621–631 (2001)

    Article  Google Scholar 

  40. L. Stankovic, Digital Signal Processing with Selected Topics (CreateSpace Independent Publishing Platform, An Amazon. Com Company, 2015)

    Google Scholar 

  41. L. Stankovic, M. Brajovic, Analysis of the reconstruction of sparse signals in the DCT domain applied to audio signals. IEEE/ACM Trans. Audio Speech Lang. Process. 26(7), 1216–1231 (2018)

    Article  Google Scholar 

  42. L. Stankovic, M. Brajovic, I. Stankovic, C. Ioana, M. Dakovic, Reconstruction error in nonuniformly sampled approximately sparse signals. IEEE Geosci. Remote Sens. Lett. (2020). https://doi.org/10.1109/LGRS.2020.2968137

    Article  MATH  Google Scholar 

  43. L. Stankovic, M. Dakovic, On the uniqueness of the spa rse signals reconstruction based on the missing samples variation analysis. Math. Probl. Eng. Article ID 629759 (2015). https://doi.org/10.1155/2015/629759

  44. L. Stankovic, M. Dakovic, I. Stankovic, S. Vujovic, On the errors in randomly sampled nonsparse signals reconstructed with a sparsity assumption. IEEE Geosci. Remote Sens. Lett. 14(12), 2453–2456 (2017)

    Article  Google Scholar 

  45. L. Stankovic, M. Dakovic, S. Vujovic, Reconstruction of Sparse signals in impulsive disturbance environments. Circuits Syst. Signal Process. 36, 767–794 (2016). https://doi.org/10.1007/s00034-016-0334-3

    Article  MATH  Google Scholar 

  46. L. Stankovic, D.P. Mandic, M. Dakovic, I. Kisil, Demystifying the Coherence Index in Compressive Sensing. IEEE Signal Process. Mag. 37(1), 152–162 (2020)

    Article  Google Scholar 

  47. S. Stankovic, I. Orovic, L. Stankovic, An automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment. Sig. Process. 104, 43–50 (2014)

    Article  Google Scholar 

  48. L. Stankovic, I. Orovic, S. Stankovic, M.G. Amin, Compressive sensing based separation of nonstationary and stationary signals overlapping in time-frequency. IEEE Trans. Signal Process. 61(18), 4562–4572 (2013). https://doi.org/10.1109/TSP.2013.2271752

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Stankovic, E. Sejdic, S. Stankovic, M. Dakovic, I. Orovic, A Tutorial on Sparse Signal Reconstruction and Its Applications in Signal Processing. Circuits Syst. Signal Process. 38, 1206–1263 (2019). https://doi.org/10.1007/s00034-018-0909-2

    Article  Google Scholar 

  50. L. Stankovic, S. Stankovic, M.G. Amin, Missing samples analysis in signals for applications to L-estimation and compressive sensing. Sig. Process. 94, 401–408 (2014)

    Article  Google Scholar 

  51. L. Stankovic, S. Stankovic, I. Orovic, M.G. Amin, Robust time-frequency analysis based on the L-estimation and compressive sensing. IEEE Signal Process. Lett. 20(5), 499–502 (2013)

    Article  Google Scholar 

  52. C. Studer, P. Kuppinger, G. Pope, H. Bolcskei, Recovery of sparsely corrupted signals. IEEE Trans. Inf. Theory 58(5), 3115–3130 (2012)

    Article  MathSciNet  Google Scholar 

  53. A. Torokhti, P. Howlett, H. Laga, Estimation of stochastic signals under partially missing information. Sig. Process. 111, 199–209 (2015)

    Article  Google Scholar 

  54. S.V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  55. I. Volaric, V. Sucic, On the noise impact in the L1 based reconstruction of the sparse time-frequency distributions, in 2016 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), Gratz, pp. 1–6 (2016)

  56. H. Wang, D. Suter, Robust adaptive-scale parametric model estimation for computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1459–1474 (2004). https://doi.org/10.1109/TPAMI.2004.109

    Article  Google Scholar 

  57. G.H. You, T.S. Qiu, A.M. Song, Novel direction findings for cyclostationary signals in impulsive noise environments. Circuits Syst. Signal Process. 32(6), 2939–2956 (2013)

    Article  MathSciNet  Google Scholar 

  58. L. Zhao, Y. Hu, Y. Liu, Stochastic gradient matching pursuit algorithm based on sparse estimation. Electronics 8(2), 165 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Croatian Science Foundation under the project IP-2020-02-4358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubiša Stanković.

Ethics declarations

Data Availability

Data will be made available on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanković, L., Brajović, M., Stanković, I. et al. RANSAC-Based Signal Denoising Using Compressive Sensing. Circuits Syst Signal Process 40, 3907–3928 (2021). https://doi.org/10.1007/s00034-021-01654-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01654-4

Keywords

Navigation