Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nephroprotective properties of taurine-amikacin treatment in rats are mediated through HSP25 and TLR-4 regulation

Abstract

Amikacin (AMK) is one of the most effective aminoglycoside antibiotics. However, nephrotoxicity is a major deleterious and dose-limiting side effect associated with its clinical use especially in high dose AMK-treated patients. The present study assessed the ability of taurine (TAU) to alleviate or prevent AMK-induced nephrotoxicity if co-administrated with AMK focusing on inflammation, apoptosis, and fibrosis. Male Sprague Dawley rats were assigned to six equal groups. Group 1: rats received saline (normal control), group 2: normal rats received 50 mg kg−1 TAU intraperitoneally (i.p.). Groups 3 and 4: received AMK (25 or 50 mg kg−1; i.p.). Groups 5 and 6: received TAU (50 mg kg−1; i.p.) concurrently with AMK (25 or 50 mg kg−1; i.p.) for 3 weeks. AMK-induced nephrotoxicity is evidenced by elevated levels of serum creatinine (CRE), blood urea nitrogen (BUN), and uric acid (UA). Histopathological investigations provoked damaging changes in the renal tissues. Heat shock proteins (HSP)25 and Toll-like receptor-4 (TLR-4) elevated levels were involved in the induction of inflammatory reactions and focal fibrosis. The improved activation of TLR-4 may stimulate monocytes to upgrade Interleukin (IL)-18 production rather than IL-10. TAU proved therapeutic effectiveness against AMK-induced renal toxicity through downregulation of HSP25, TLR-4, caspase-3, and IL-18 with up-regulation of IL-10 levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available.

Materials availability

All materials are available.

References

  1. Dinesh K, Sagar B, Sadiq B. Drug-induced nephrotoxicity. Int J Basic Clin Pharmacol. 2014;3:591–7.

    Article  Google Scholar 

  2. Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin-induced nephrotoxicity: do we have a promising therapeutic approach to blunt it? Pharmacol Res 2010;62:179–86.

    Article  CAS  PubMed  Google Scholar 

  3. Walker RJ, Duggin GG. Drug nephrotoxicity. Annu Rev Pharmacol Toxicol 1988;28:331–45.

    Article  CAS  PubMed  Google Scholar 

  4. Lecelerq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 1999;43:1003–12.

    Article  Google Scholar 

  5. Klemens JJ, Meech RP, Hughes LF, Somani S, Campbell KCM. Antioxidant enzyme levels inversely covary with hearing loss after amikacin treatment. J Am Acad Audiol 2003;14:134–42.

    Article  PubMed  Google Scholar 

  6. Imig JD, Ryan MJ. Immune and inflammatory role in renal disease. Compr Physiol. 2013;3:957–76.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cunningham PN, Wang Y, Guo R, He G, Quigg RJ. Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J Immunol. 2004;172:2629–35.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB. TLR-4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol. 2008;19:923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Voogdt CGP, van Putten JPM. The evolution of the Toll-Like receptor system. In: The evolution of the immune system book. Elsevier Inc: Academic Press, Italy. 2016; p. 311–30.

  10. Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol. 2007;81:15–27.

    Article  CAS  PubMed  Google Scholar 

  11. Favet N, Duverger O, Loones MT, Poliard A, Kellermann O, Morange M. Overexpression of murine small heat shock protein HSP25 interferes with chondrocyte differentiation and decreases cell adhesion. Cell Death Differ. 2001;8:603–13.

    Article  CAS  PubMed  Google Scholar 

  12. Orzalli MH, Kagan JC. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 2017;27:800–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Servais H, Jossin Y, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP. Gentamicin causes apoptosis at low concentrations in renal LLC-PK1 cells subjected to electroporation. Antimicrob Agents Chemother. 2006;50:1213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.

    Article  CAS  PubMed  Google Scholar 

  15. Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW, Edelstein CL. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Investig. 2001;107:1145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ. IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol. 2008;19:2331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, Miyaji T, McLeroy P, Nibhanupudy B, Li S, Star RA. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001;60:2118–28.

    Article  CAS  PubMed  Google Scholar 

  18. Jin Y, Liu R, Xie J, Xiong H, He JC, Chen N. Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model. Lab Investig. 2013;93:801–11.

    Article  CAS  PubMed  Google Scholar 

  19. Lourenço R, Camilo ME. Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp. 2002;17:262–70.

    PubMed  Google Scholar 

  20. Oja SS, Saransaari P. Open questions concerning taurine with emphasis on the brain. Adv Exp Med Biol. 2015;803:409–13.

    Article  CAS  PubMed  Google Scholar 

  21. Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol. 2017;110:109–21.

    Article  CAS  PubMed  Google Scholar 

  22. Waterfield CJ, Mesquita M, Parnham P, Timbrell JA. Cytoprotective effects of taurine in isolated rat hepatocytes. Toxicol In Vitro. 1994;8:573–5.

    Article  CAS  PubMed  Google Scholar 

  23. Eppler B, Dawson R Jr. Cytoprotective role of taurine in a renal epithelial cell culture model. Biochem Pharm. 2002;15:1051–60. 63

    Article  Google Scholar 

  24. Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 2010;24:S6. 17 Suppl 1

    Article  CAS  Google Scholar 

  25. Huxtable RJ, Michalk D. Taurine in health and disease. Springer Science & Business Media, New York. 1994; p. 31–9.

  26. Kong WX, Chen SW, Li YL, Zhang YJ, Wang R, Min L, Mi X. Effects of taurine on rat behaviors in three anxiety models. Pharm Biochem Behav. 2006;83:271–6.

    Article  CAS  Google Scholar 

  27. Sun M, Gu Y, Zhao Y, Xu C. Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids. 2011;40:1419–29.

    Article  CAS  PubMed  Google Scholar 

  28. Abdel-Wahab WM, Moussa FI, Saad NA. Synergistic protective effect of N-acetylcysteine and taurine against cisplatin-induced nephrotoxicity in rats. Drug Des Dev Ther. 2017;11:901–8.

    Article  CAS  Google Scholar 

  29. Yousef HN, Aboelwafa HR. The potential protective role of taurine against 5-fluorouracil-induced nephrotoxicity in adult male rats. Exp Toxicol Pathol. 2017;69:265–74.

    Article  CAS  PubMed  Google Scholar 

  30. Shaheen A, Salama AA, Zaki HF, Nada SA, El-Denshary ES. The impact of omega-3 and Saccharomyces cerevisiae on Amikacin-induced nephrototoxicity in rats. Der Pharma Chemica, India. 2016; p. 223–34.

  31. Batoo AS, Hussain K, Singh R, Sultana M, Sharma N, Nabi B, Najar AA, Chaudhary S. Biochemical and oxidative alterations induced by acute amikacin toxicity in albino wistar rats. J Anim Res. 2018;8:407–10.

    Article  Google Scholar 

  32. Bonses R, Wand Taussky HH. On colorimetric determination of creatinine by Jaffe reaction. J Biol Chem 1945;158:581–91.

    Article  Google Scholar 

  33. Marsh WH, Fingerhut B, Miller H. Nonprotein nitrogen, urea, ureate creatine and creatinine. In Practical clinical biochemistry. 5th ed. William Heineman Medical Books Ltd. London; 1965.

  34. Newman DJ, Price CP. Renal function and nitrogen metabolism. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of clinical chemistry. 3rd ed. W.B. Sounders, Philadelphia; 1994.

  35. Huang Y-S, Li Y-C, Tsai P-Y, et al. Accumulation of methylglyoxal and d-lactate in Pb-induced nephrotoxicity in rats. Biomed Chromatogr. 2017;31:e3869.

    Article  CAS  Google Scholar 

  36. Chen SM, Lin CE, Chen HH, Cheng YF, Cheng HW, Imai K. Effect of prednisolone on glyoxalase 1 in an inbred mouse model of aristolochic acid nephropathy using a proteomics method with fluorogenic derivatization-liquid chromatography–tandem mass spectrometry. PLoS One. 2020;15:e0227838. Jan 22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bancroft JD, Stevens A, Turner DR. Theory and practice of histological techniques. 4th ed. New York, London, San Francisco, Tokyo: Churchil Livingstone; 1996.

  38. Hegazy R, Salama A, Mansour D, Hassan A. Renoprotective effect of lactoferrin against chromium-induced acute kidney injury in rats: involvement of IL-18 and IGF-1 inhibition. PLoS ONE. 2016;18:e0151486. 11

    Article  CAS  Google Scholar 

  39. Ali ARA, Ismail SH. The protective effect of honey against amikacin-induced nephrotoxicity in rats. Iraqi J Pharm Sci. 2012;21:85–93.

    Google Scholar 

  40. Agence française de sécurité sanitaire des produits de santé. Update on good use of injectable aminoglycosides, gentamycin, tobramycin, netilmycin, amikacin. Pharmacological properties, indications, dosage, and mode of administration, treatment monitoring. Med Mal Infect. 2012;42:301–8. https://doi.org/10.1016/j.medmal.2011.07.007.

  41. White BP, Lomaestro B, Pai MP. Optimizing the initial amikacin dosage in adults. Antimicrob Agents Chemother. 2015;59:7094–6. https://doi.org/10.1128/AAC.01032-15.

  42. Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis. 2007;45:753–60.

    Article  CAS  PubMed  Google Scholar 

  43. Ozer MK, Asci H, Oncu M, Yesilot S, Savran M, Bayram D, Cicek E. Effects of pentoxifylline on amikacin-induced nephrotoxicity in rats. Ren Fail. 2009;31:134–9.

    Article  CAS  PubMed  Google Scholar 

  44. Gounden V, Bhatt H, Jialal I. Renal function tests. [Updated 2020 Jul 20]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2020 https://www.ncbi.nlm.nih.gov/books/NBK507821/.

  45. Yazar E, Elmas M, Altunok V, Sivrikaya A, Oztekin E, Birdane YO. Effects of aminoglycoside antibiotics on renal antioxidants, malondialdehyde levels, and some serum biochemical parameters. Can J Vet Res. 2003;67:239–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Al-Attar AM, Al-Taisan WA. Preventive effects of black seed (Nigella sativa) extract on Sprague dawley rats exposed to diazinon. Aust J Basic Appl Sci 2010;4:957–68.

    CAS  Google Scholar 

  47. Kaynar K, Gul S, Ersoz S, Ozdemir F, Ulusoy H, Ulusoy S. Amikacin-induced nephropathy: is there any protective way? Ren Fail. 2007;29:23–27.

    Article  CAS  PubMed  Google Scholar 

  48. Erdem A, Gündoğan NU, Usubütün A, Kilinç K, Erdem SR, Kara A, Bozkurt A. The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol Dial Transpl. 2000;15:1175–82.

    Article  CAS  Google Scholar 

  49. Doğan EE, Erkoç R, Ekinci İ, Hamdard J, Döner B, Çıkrıkçıoğlu MA, Karatoprak C, Çoban G, Özer ÖF, Kazancıoğlu R. Protective effect of dexpanthenol against nephrotoxic effect of amikacin: an experimental study. Biomed Pharmacother. 2017;89:1409–14.

    Article  PubMed  CAS  Google Scholar 

  50. Abdel-Daim MM, Ahmed A, Ijaz H, Abushouk AI, Ahmed H, Negida A, Aleya L, Bungau SG. Influence of Spirulina platensis and ascorbic acid on amikacin-induced nephrotoxicity in rabbits. Environ Sci Pollut Res Int. 2019;26:8080–6.

    Article  CAS  PubMed  Google Scholar 

  51. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14:105–11.

    Article  CAS  PubMed  Google Scholar 

  52. van Noort JM, Bsibsi M, Nacken P, Gerritsen WH, Amor S. The link between small heat shock proteins and the immune system. Int J Biochem Cell Biol. 2012;44:1670–9.

    Article  PubMed  CAS  Google Scholar 

  53. Bakthisaran R, Tangirala R, Rao ChM. Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta. 2015;1854:291–319.

    Article  CAS  PubMed  Google Scholar 

  54. Guo Q, Du X, Zhao Y, Zhang D, Yue L, Wang Z. Ischemic postconditioning prevents renal ischemia reperfusion injury through the induction of heat shock proteins in rats. Mol Med Rep. 2014;10:2875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim M, Park SW, Kim M, Chen SW, Gerthoffer WT, D’Agati VD, Lee HT. Selective renal overexpression of human heat shock protein 27 reduces renal ischemia-reperfusion injury in mice. Am J Physiol Ren Physiol. 2010;299:F347–358.

    Article  CAS  Google Scholar 

  56. Salari S, Seibert T, Chen YX, Hu T, Shi C, Zhao X, Cuerrier CM, Raizman JE, O'Brien ER. Extracellular HSP27 acts as a signaling molecule to activate NF-κβ in macrophages. Cell Stress Chaperones. 2013;18:53–63.

    Article  CAS  PubMed  Google Scholar 

  57. De AK, Kodys KM, Yeh BS, Miller-Graziano C. Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J Immunol. 2000;165:3951–8.

    Article  CAS  PubMed  Google Scholar 

  58. West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 2006;22:409–37.

    Article  CAS  PubMed  Google Scholar 

  59. González-Guerrero C, Cannata-Ortiz P, Guerri C, Egido J, Ortiz A, Ramos AM. TLR4-mediated inflammation is a key pathogenic event leading to kidney damage and fibrosis in cyclosporine nephrotoxicity. Arch Toxicol. 2017;91:1925–39.

    Article  PubMed  CAS  Google Scholar 

  60. Akcay A, Nguyen Q, Edelstein CL. Mediators of inflammation in acute kidney injury. Mediators Inflamm. 2009;2009:137072.

    Article  PubMed  CAS  Google Scholar 

  61. Jonak ZL, Trulli S, Maier C, McCabe FL, Kirkpatrick R, Johanson K, Ho YS, Elefante L, Chen YJ, Herzyk D, Lotze MT, Johnson RK. High-dose recombinant interleukin-18 induces an effective Th1 immune response to murine MOPC-315 plasmacytoma. J Immunother. 2002;25(Suppl 1):S20–7.

    Article  CAS  PubMed  Google Scholar 

  62. Griffin BR, Faubel S, Edelstein CL. Biomarkers of drug-induced kidney toxicity. Ther Drug Monit. 2019;41:213–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Safina AI, Daminova MA, Abdullina GA. Acute kidney injury in neonatal intensive care: medicines involved. Int J Risk Saf Med. 2015;27(Suppl 1):S9–S10.

    Article  PubMed  Google Scholar 

  64. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, Arsenijevic N. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019;26:25

    Article  PubMed  PubMed Central  Google Scholar 

  65. Luft FC, Aronoff GR, Evan AP, Connors BA. The effect of aminoglycosides on glomerular endothelium: a comparative study. Res Commun Chem Pathol Pharm. 1981;34:89–95.

    CAS  Google Scholar 

  66. Lau AH. Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int. 1999;56:1295–8.

    Article  CAS  PubMed  Google Scholar 

  67. El Mouedden M, Laurent G, Mingeot-Leclercq MP, Taper HS, Cumps J, Tulkens PM. Apoptosis in renal proximal tubules of rats treated with low doses of aminoglycosides. Antimicrob Agents Chemother. 2000;44:665–6675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Havasi A, Borkan SC. Apoptosis and acute kidney injury. Kidney Int. 2011;80:29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pezzanite L, Chow L, Soontararak S, Phillips J, Goodrich L, Dow S. Amikacin induces rapid dose-dependent apoptotic cell death in equine chondrocytes and synovial cells in vitro. Equine Vet J. 2020;52:715–24.

    Article  PubMed  Google Scholar 

  70. Bohannon LK, Owens SD, Walker NJ, Carrade DD, Galuppo LD, Borjesson DL. The effects of therapeutic concentrations of gentamicin, amikacin, and hyaluronic acid on cultured bone marrow derived equine mesenchymal stem cells. Equine Vet J. 2013;45:732–6.

    Article  CAS  PubMed  Google Scholar 

  71. Pirhonen J, Sareneva T, Julkunen I, Matikainen S. Virus infection induces proteolytic processing of IL-18 in human macrophages via caspase-1 and caspase-3 activation. Eur J Immunol. 2001;31:726–33.

    Article  CAS  PubMed  Google Scholar 

  72. De Souza VB, RFL de Oliveira, HF de Lucena, AAA Ferreira, GCB Guerra, MDL Freitas,  KCDS Queiroz, RF de Araújo. Gentamicin induces renal morphopathology in Wistar rats. Int J Morphol. 2009;27:59–63.

    Google Scholar 

  73. Liu B, Tan P. PPAR γ/TLR-4/TGF-β1 axis mediates the protection effect of erythropoietin on cyclosporin A-induced chronic nephropathy in rat. Ren Fail. 2020;42:216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, Seeliger MW, Warskulat U, Häussinger D. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J. 2002;16:231–3.

    Article  CAS  PubMed  Google Scholar 

  75. Schuller-Levis GB, Park E. Taurine and its chloramine: modulators of immunity. Neurochem Res. 2004;29:117–26.

    Article  CAS  PubMed  Google Scholar 

  76. Marcinkiewicz J, Kontny E. Taurine and inflammatory diseases. Amino Acids. 2014;46:7–20.

    Article  CAS  PubMed  Google Scholar 

  77. Shao A, Hathcock JN. Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharm. 2008;50:376–99.

    Article  CAS  Google Scholar 

  78. Saad SY, Al-Rikabi AC. Protection effects of taurine supplementation against cisplatin-induced nephrotoxicity in rats. Chemotherapy 2002;48:42–48.

    Article  CAS  PubMed  Google Scholar 

  79. Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpira N, Vazin A. The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother. 2019;109:103–11.

    Article  CAS  PubMed  Google Scholar 

  80. Trachtman H, Del Pizzo R, Futterweit S, Levine D, Rao PS, Valderrama E, Sturman JA. Taurine attenuates renal disease in chronic puromycin aminonucleoside nephropathy. Am J Physiol. 1992;262(1 Part 2):F117–23.

    CAS  PubMed  Google Scholar 

  81. Tabassum H, Parvez S, Rehman H, Dev Banerjee B, Siemen D, Raisuddin S. Nephrotoxicity and its prevention by taurine in tamoxifen induced oxidative stress in mice. Hum Exp Toxicol. 2007;26:509–18.

    Article  CAS  PubMed  Google Scholar 

  82. Solomon EO, Gideon A, Adegboyega KO, The modulatory effect of taurine on benzo (a) pyrene-induced hepatorenal toxicity. Toxicol. Res. 2021;10:389–98. https://doi-org.eres.qnl.qa/10.1093/toxres/tfab016

  83. Van Eden W, Wick G, Albani S, Cohen I. Stress, heat shock proteins and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory disease. Ann N Y Acad Sci. 2007;1113:217–37.

    Article  PubMed  CAS  Google Scholar 

  84. Shields AM, Panayi GS, Corrigall VM. Resolution-associated molecular patterns (RAMP): RAMParts defending immunological homeostasis. Clin Exp Immunol. 2011;165:292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. ironi M, Martinez FO, D’Ambrosio D, Gattorno M, Polentarutti N, Locati M, Gregorio A, Iellem A, Cassatella MA, Van Damme J, Sozzani S, Martini A, Sinigaglia F, Vecchi A, Mantovani A. Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol. 2006;80:342–9.

    Article  CAS  Google Scholar 

  86. Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv Wound Care. 2020;9:184–98.

    Article  Google Scholar 

  87. Tadagavadi RK, Reeves WB. Endogenous IL-10 attenuates cisplatin nephrotoxicity: role of dendritic cells. J Immunol. 2010;185:4904–11.

    Article  CAS  PubMed  Google Scholar 

  88. Kitching AR, Tipping PG, Timoshanko JR, Holdsworth SR. Endogenous interleukin-10 regulates Th1 responses that induce crescentic glomerulonephritis. Kidney Int. 2000;57:518–25.

    Article  CAS  PubMed  Google Scholar 

  89. Chorazy-Massalska M, Kontny E, Kornatka A, Rell-Bakalarska M, Marcinkiewicz J, Maśliński W. The effect of taurine chloramine on pro-inflammatory cytokine production by peripheral blood mononuclear cells isolated from rheumatoid arthritis and osteoarthritis patients. Clin Exp Rheumatol. 2004;22:692–8.

    CAS  PubMed  Google Scholar 

  90. Nakajima Y, Osuka K, Seki Y, Gupta RC, Hara M, Takayasu M, Wakabayashi T. Taurine reduces inflammatory responses after spinal cord injury. J Neurotrauma. 2010;27:403–10.

    Article  PubMed  Google Scholar 

  91. Lu YF, Zhang QY, Wang LH, Liu XY, Zhang SX. The protective effects of taurine on experimental autoimmune myocarditis. Eur Rev Med Pharm Sci. 2017;21:1868–75.

    Google Scholar 

  92. Das J, Sil PC. Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids. 2012;43:1509–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neveen Madbouly.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and consent to participate

Experimental procedures were accepted by the Ethics Committee of Faculty of science, Cairo University with approval number CUIF5019 and the National Research Center Animal Care and Use Committee. All authors gave the corresponding author consent to publish this work in behalf of them and the consent will be provided when asked.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madbouly, N., Azmy, A., Salama, A. et al. The nephroprotective properties of taurine-amikacin treatment in rats are mediated through HSP25 and TLR-4 regulation. J Antibiot 74, 580–592 (2021). https://doi.org/10.1038/s41429-021-00441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00441-2

This article is cited by

Search

Quick links