Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intracellular delivery of His-tagged proteins via a hybrid organic–inorganic nanoparticle

Abstract

Intracellular delivery of proteins remains challenging. Here, we present a simple and general platform for the efficient loading and delivery of proteins using a methoxy-poly(ethylene glycol)-block-poly(L-phosphotyrosine) (mPEG-b-PpY)-templated calcium phosphate (CaP) hybrid nanoparticle. By doping hybrid CaP nanoparticles with Zn2+ (CaP-Zn), recombinant proteins bearing a histidine tag can be conveniently loaded by harnessing the His-Zn coordination bond. The resulting protein@CaP-Zn nanoparticles display low toxicity and are tunable, uniform in size, stable under physiological conditions, and degradable in acidic milieu for responsive release. Proteins loaded onto the CaP-Zn nanoparticle can be protected from proteolytic degradation and effectively delivered to intracellular spaces. This work may open up opportunities for protein activity preservation and facilitate the intracellular delivery of recombinant protein therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  CAS  PubMed  Google Scholar 

  2. Urquhart L. Top companies and drugs by sales in 2020. Nat Rev Drug Discov. 2021;20:253.

    Article  CAS  PubMed  Google Scholar 

  3. Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials. 2019;218:119358.

    Article  CAS  PubMed  Google Scholar 

  4. Gu Z, Biswas A, Zhao M, Tang Y. Tailoring nanocarriers for intracellular protein delivery. Chem Soc Rev. 2011;40:3638–55.

    Article  CAS  PubMed  Google Scholar 

  5. Scaletti F, Hardie J, Lee YW, Luther DC, Ray M, Rotello VM. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev. 2018;47:3421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Su S, Wang YY, Du FS, Lu H, Li ZC. Dynamic covalent bond‐assisted programmed and traceless protein release: high loading nanogel for systemic and cytosolic delivery. Adv Funct Mater. 2018;28:1805287.

    Article  CAS  Google Scholar 

  7. Wang R, Sheng K, Hou Y, Sun J, Lu H. Tailoring cationic helical polypeptides for efficient cytosolic protein delivery. Chem Res Chin Univ. 2020;36:134–8.

    Article  CAS  Google Scholar 

  8. Li X, Wei Y, Wu Y, Yin L. Hypoxia-induced pro-protein therapy assisted by a self-catalyzed nanozymogen. Angew Chem Int Ed. 2020;59:22544–53.

    Article  CAS  Google Scholar 

  9. He H, Chen Y, Li Y, Song Z, Zhong Y, Zhu R, et al. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv Funct Mater. 2018;28:1706710.

    Article  CAS  Google Scholar 

  10. Yao P, Zhang Y, Meng H, Sun H, Zhong Z. Smart polymersomes dually functionalized with cRGD and fusogenic GALA peptides enable specific and high-efficiency cytosolic delivery of apoptotic proteins. Biomacromolecules. 2019;20:184–91.

    Article  CAS  PubMed  Google Scholar 

  11. Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci. 2020;8:5804–23.

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Bolinger J, Yu Y, Glass Z, Shi N, Yang L, et al. Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles. Biomater Sci. 2019;7:596–606.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Jarvis R, Zhu K, Glass Z, Ogurlu R, Gao P, et al. Protein and mRNA delivery enabled by cholesteryl-based biodegradable lipidoid nanoparticles. Angew Chem Int Ed. 2020;59:14957–64.

    Article  CAS  Google Scholar 

  14. Solaro R, Chiellini F, Battisti A. Targeted delivery of protein drugs by nanocarriers. Materials. 2010;3:1928–80.

    Article  CAS  PubMed Central  Google Scholar 

  15. Zhou HX, Pang X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev. 2018;118:1691–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic interplay of covalent and non-covalent interactions in reactive polymer nanoassembly facilitates intracellular delivery of antibodies. Angew Chem Int Ed. 2021;60:1821–30.

    Article  CAS  Google Scholar 

  17. Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov. 2019;18:273–94.

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Hou Y, Hu Y, Dou J, Shen Y, Wang Y, et al. Enzyme-activatable interferon–poly(α-amino acid) conjugates for tumor microenvironment potentiation. Biomacromolecules. 2019;20:3000–8.

    Article  CAS  PubMed  Google Scholar 

  19. Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 2012;30:184–9.

    Article  CAS  PubMed  Google Scholar 

  20. Honda Y, Nomoto T, Matsui M, Takemoto H, Kaihara Y, Miura Y, et al. Sequential self-assembly using tannic acid and phenylboronic acid-modified copolymers for potential protein delivery. Biomacromolecules. 2020;21:3826–35.

    Article  CAS  PubMed  Google Scholar 

  21. Lv J, Wang C, Li H, Li Z, Fan Q, Zhang Y, et al. Bifunctional and bioreducible dendrimer bearing a fluoroalkyl tail for efficient protein delivery both in vitro and in vivo. Nano Lett. 2020;20:8600–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ren L, Lv J, Wang H, Cheng Y. A coordinative dendrimer achieves excellent efficiency in cytosolic protein and peptide delivery. Angew Chem Int Ed. 2020;59:4711–9.

    Article  CAS  Google Scholar 

  23. Zhang S, Cheng Y. Boronic acid-engineered gold nanoparticles for cytosolic protein delivery. Biomater Sci. 2020;8:3741–50.

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Luo T, Xue Y, Mao L, Stang PJ, Wang M. Hierarchical self-assembly of discrete metal-organic cages into supramolecular nanoparticles for intracellular protein delivery. Angew Chem Int Ed. 2021;60:5429–35.

    Article  CAS  Google Scholar 

  25. Yang X, Tang Q, Jiang Y, Zhang M, Wang M, Mao L. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J Am Chem Soc. 2019;141:3782–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol. 1988;6:1321–5.

    Article  CAS  Google Scholar 

  27. Porath J. Immobilized metal ion affinity chromatography. Protein Expr Purif. 1992;3:263–81.

    Article  CAS  PubMed  Google Scholar 

  28. Postupalenko V, Desplancq D, Orlov I, Arntz Y, Spehner D, Mely Y, et al. Protein delivery system containing a nickel-immobilized polymer for multimerization of affinity-purified His-tagged proteins enhances cytosolic transfer. Angew Chem Int Ed. 2015;54:10583–6.

    Article  CAS  Google Scholar 

  29. Roder R, Preiss T, Hirschle P, Steinborn B, Zimpel A, Hohn M, et al. Multifunctional nanoparticles by coordinative self-assembly of His-tagged units with metal-organic frameworks. J Am Chem Soc 2017;139:2359–68.

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Li AC, Xu Q. Intracellular delivery of His-tagged genome-editing proteins enabled by nitrilotriacetic acid-containing lipidoid nanoparticles. Adv Healthc Mater. 2019;8:e1800996.

    Article  PubMed  CAS  Google Scholar 

  31. Huang D, He B, Mi P. Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics. Biomater Sci. 2019;7:3942–60.

    Article  CAS  PubMed  Google Scholar 

  32. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.

    Article  CAS  PubMed  Google Scholar 

  33. Shi H, Cheng Q, Yuan S, Ding X, Liu Y. Human serum albumin conjugated nanoparticles for pH and redox-responsive delivery of a prodrug of cisplatin. Chemistry. 2015;21:16547–54.

    Article  CAS  PubMed  Google Scholar 

  34. Nomoto T, Fukushima S, Kumagai M, Miyazaki K, Inoue A, Mi P, et al. Calcium phosphate-based organic-inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy. Biomater Sci. 2016;4:826–38.

    Article  CAS  PubMed  Google Scholar 

  35. Kakizawa Y, Miyata K, Furukawa S, Kataoka K. Size-controlled formation of a calcium phosphate-based organic–inorganic hybrid vector for gene delivery using poly(ethylene glycol)-block-poly(aspartic acid). Adv Mater. 2004;16:699–702.

    Article  CAS  Google Scholar 

  36. Choi KY, Silvestre OF, Huang X, Min KH, Howard GP, Hida N, et al. Versatile RNA interference nanoplatform for systemic delivery of RNAs. ACS Nano. 2014;8:4559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pittella F, Cabral H, Maeda Y, Mi P, Watanabe S, Takemoto H, et al. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J Control Release. 2014;178:18–24.

    Article  CAS  PubMed  Google Scholar 

  38. Kakizawa Y, Furukawa S, Kataoka K. Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and siRNA delivery. J Control Release. 2004;97:345–56.

    Article  CAS  PubMed  Google Scholar 

  39. Sun Y, Hou Y, Zhou X, Yuan J, Wang J, Lu H. Controlled synthesis and enzyme-induced hydrogelation of poly(l-phosphotyrosine)s via ring-opening polymerization of α-amino acid N-carboxyanhydride. ACS Macro Lett. 2015;4:1000–3.

    Article  CAS  PubMed  Google Scholar 

  40. Hou Y, Wang Y, Wang R, Bao W, Xi X, Sun Y, et al. Harnessing phosphato-platinum bonding induced supramolecular assembly for systemic cisplatin delivery. ACS Appl Mater Interfaces. 2017;9:17757–68.

    Article  CAS  PubMed  Google Scholar 

  41. Li SL, Hou Y, Hu Y, Yu J, Wei W, Lu H. Phosphatase-triggered cell-selective release of a Pt(iv)-backboned prodrug-like polymer for an improved therapeutic index. Biomater Sci. 2017;5:1558–66.

    Article  CAS  PubMed  Google Scholar 

  42. Li SL, Wang Y, Zhang J, Wei W, Lu H. Targeted delivery of a guanidine-pendant Pt(iv)-backboned poly-prodrug by an anisamide-functionalized polypeptide. J Mater Chem B. 2017;5:9546–57.

    Article  CAS  PubMed  Google Scholar 

  43. Kohri K, Umekawa T, Kodama M, Katayama Y, Ishikawa Y, Takada M, et al. Inhibitory effect of glutamic acid and aspartic acid on calcium oxalate crystal formation. Eur Urol. 1990;17:173–7.

    Article  CAS  PubMed  Google Scholar 

  44. Mi P, Kokuryo D, Cabral H, Wu H, Terada Y, Saga T, et al. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat Nanotechnol. 2016;11:724–30.

    Article  CAS  PubMed  Google Scholar 

  45. Hou Y, Yuan J, Zhou Y, Yu J, Lu H, Concise A. Approach to site-specific topological protein-poly(amino acid) conjugates enabled by in situ-generated functionalities. J Am Chem Soc. 2016;138:10995–11000.

    Article  CAS  PubMed  Google Scholar 

  46. Mi P, Kokuryo D, Cabral H, Kumagai M, Nomoto T, Aoki I, et al. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. J Control Release. 2014;174:63–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0201400). We are thankful for the grant from the National Natural Science Foundation of China (21722401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Wang, Y. & Lu, H. Intracellular delivery of His-tagged proteins via a hybrid organic–inorganic nanoparticle. Polym J 53, 1259–1267 (2021). https://doi.org/10.1038/s41428-021-00526-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00526-7

This article is cited by

Search

Quick links