Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The blood–tumour barrier in cancer biology and therapy

Abstract

The protective blood–brain barrier has a major role in ensuring normal brain function by severely limiting and tightly controlling the ingress of substances into the brain from the circulation. In primary brain tumours, such as glioblastomas, as well as in brain metastases from cancers in other organs, including lung and breast cancers and melanoma, the blood–brain barrier is modified and is referred to as the blood–tumour barrier (BTB). Alterations in the BTB affect its permeability, and this structure participates in reciprocal regulatory pathways with tumour cells. Importantly, the BTB typically retains a heterogeneous capacity to restrict the penetration of many therapeutic agents into intracranial tumours, and overcoming this challenge is a key to improving the effectiveness of treatment and patient quality of life. Herein, current knowledge of BTB structure and function is reviewed from a cell and cancer biology standpoint, with a focus on findings derived from in vivo models and human tumour specimens. Additionally, how this knowledge can be translated into clinical advances for patients with cancer is discussed.

Key points

  • The blood–brain barrier surrounding capillaries in the brain parenchyma is modified to a blood–tumour barrier (BTB) upon the development of primary or metastatic brain tumours.

  • The BTB is heterogeneously permeable to many drugs, contributing to poor therapeutic efficacy.

  • Research has uncovered consistent changes in BTBs. BTB permeability has been changed by modifying select alterations, indicating that the BTB presents viable molecular targets for improving drug efficacy.

  • New brain-penetrant molecularly targeted inhibitors of oncoproteins have demonstrated efficacy in subgroups of patients with brain metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The normal structure and permeability pathways of the BBB.
Fig. 2: Characteristics of the BTB.

Similar content being viewed by others

References

  1. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 21 (Suppl. 5), v1–v100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Larjavaara, S. et al. Incidence of gliomas by anatomic location. Neuro-oncology 9, 319–325 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weller, M. et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 18, e315–e329 (2017).

    Article  PubMed  Google Scholar 

  4. Walid, M. S. Prognostic factors for long-term survival after glioblastoma. Perm. J. 12, 45–48 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Valiente, M. et al. The evolving landscape of brain metastasis. Trends Cancer 4, 176–196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boire, A., Brastianos, P. K., Garzia, L. & Valiente, M. Brain metastasis. Nat. Rev. Cancer 20, 4–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, Y. L. et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 383, 1711–1723 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Park, S. et al. A phase II, multicenter, two cohort study of 160 mg osimertinib in EGFR T790M-positive non-small-cell lung cancer patients with brain metastases or leptomeningeal disease who progressed on prior EGFR TKI therapy. Ann. Oncol. 31, 1397–1404 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Brufsky, A. M. et al. Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin. Cancer Res. 17, 4834–4843 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Hurvitz, S. A. et al. Central nervous system metastasis in patients with HER2-positive metastatic breast cancer: patient characteristics, treatment, and survival from SystHERs. Clin. Cancer Res. 25, 2433–2441 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, N. U. et al. Intracranial efficacy and survival with tucatinib plus trastuzumab and capecitabine for previously treated HER2-positive breast cancer with brain metastases in the HER2CLIMB trial. J. Clin. Oncol. 38, 2610–2619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amaral, T. et al. Combined immunotherapy with nivolumab and ipilimumab with and without local therapy in patients with melanoma brain metastasis: a DeCOG* study in 380 patients. J. Immunother. Cancer 8, e000333 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tawbi, H. A. et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 379, 722–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Tellingen, O. et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updates 19, 1–12 (2015).

    Article  Google Scholar 

  16. Erlich, P. D. Das Sauerstoff-Bedürfniss des Organismus (Hirschwald, 1885).

  17. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Pardridge, W. M. CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv. 13, 963–975 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Daneman, R. & Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Arvanitis, C., Ferraro, G. & Jain, R. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Vanlandewijck, M. et al. Author Correction: A molecular atlas of cell types and zonation in the brain vasculature. Nature 560, E3 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Keaney, J. & Campbell, M. The dynamic blood-brain barrier. FEBS J. 282, 4067–4079 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–U238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villaseñor, R., Lampe, J., Schwaninger, M. & Collin, L. Intracellular transport and regulation of transcytosis across the blood-brain barrier. Cell Mol. Life Sci. 76, 1081–1092 (2019).

    Article  PubMed  CAS  Google Scholar 

  25. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller, D. S. in ABC Transporters and Cancer Vol. 125 (eds Ishikawa, T. & Schuetz, J. D.) 43–70 (Academic, 2015).

  27. Liebner, S. et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J. Cell Biol. 183, 409–417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, W. C. et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell 21, 591–603.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yao, Y., Chen, Z. L., Norris, E. H. & Strickland, S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat. Commun. 5, 3413 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Zhou, J. P. et al. Altered blood-brain barrier integrity in adult aquaporin-4 knockout mice. Neuroreport 19, 1–5 (2008).

    Article  PubMed  Google Scholar 

  32. Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064–1078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saito, S. & Ihara, M. Interaction between cerebrovascular disease and Alzheimer pathology. Curr. Opin. Psychiatry 29, 168–173 (2016).

    Article  PubMed  Google Scholar 

  35. Carare, R. O. et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34, 131–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Rennels, M. L., Gregory, T. F., Blaumanis, O. R., Fujimoto, K. & Grady, P. A. Evidence for a paravascular fluid circulation in the mammalian central nervous-system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326, 47–63 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Carbonell, W. S., Ansorge, O., Sibson, N. & Muschel, R. The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4, e5857 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Fitzgerald, D. et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin. Exp. Metast. 25, 799–810 (2008).

    Article  Google Scholar 

  40. Hambardzumyan, D. & Bergers, G. Glioblastoma: defining tumor niches. Trends Cancer 1, 252–265 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Gril, B. et al. Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. Nat. Commun. 9, 2705 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Ratnam, N. M., Gilbert, M. R. & Giles, A. J. Immunotherapy in CNS cancers: the role of immune cell trafficking. Neuro-oncology 21, 37–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Duchnowska, R. et al. Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis. Breast Cancer Res. 18, 43 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Russo, M. V. & McGavern, D. B. Immune Surveillance of the CNS following infection and Injury. Trends Immunol. 36, 637–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harter, P. N. et al. Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget 6, 40836–40849 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gargini, R., Segura-Collar, B. & Sanchez-Gomez, P. Cellular plasticity and tumor microenvironment in gliomas: the struggle to hit a moving target. Cancers 12, 24 (2020).

    Article  CAS  Google Scholar 

  49. Hoque, M. M. et al. The cerebral microvasculature: basic and clinical perspectives on stroke and glioma. Microcirculation 28, e12671 (2021).

    Article  PubMed  Google Scholar 

  50. Baisiwala, S. et al. Chemotherapeutic stress induces transdifferentiation of glioblastoma cells to endothelial cells and promotes vascular mimicry. Stem Cell Int. 2019, 14 (2019).

    Google Scholar 

  51. Teglasi, V. et al. Origin and distribution of connective tissue and pericytes impacting vascularization in brain metastases with different growth patterns. J. Neuropathol. Exp. Neurol. 78, 326–339 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Lockman, P. R. et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res. 16, 5664–5678 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bugyik, E. et al. Lack of angiogenesis in experimental brain metastases. J. Neuropathol. Exp. Neurol. 70, 979–991 (2011).

    Article  PubMed  Google Scholar 

  54. Lyle, L. et al. Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer. Clin. Cancer Res. 22, 5287–5299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kealy, J. & Campbell, M. in Resistance to Targeted Therapies against Adult Brain Cancers Vol. 11 (ed Tivnan, A.) 69–87 (Springer, 2016).

  56. Avraham, H. K. et al. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J. Pathol. 232, 369–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Rodriguez, P. L., Jiang, S. X., Fu, Y. G., Avraham, S. & Avraham, H. K. The proinflammatory peptide substance P promotes blood-brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int. J. Cancer 134, 1034–1044 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Wolburg, H. et al. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. 105, 586–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Bao, X. et al. Protein expression and functional relevance of efflux and uptake drug transporters at the blood-brain barrier of human brain and glioblastoma. Clin. Pharmacol. Ther. 107, 1116–1127 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Phoenix, T. N. et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29, 508–522 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Connell, J. J. et al. Selective permeabilization of the bloodbrain barrier at sites of metastasis. J. Natl Cancer Inst. 105, 1634–1643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bao, X. et al. Quantitative protein expression of blood-brain barrier transporters in the vasculature of brain metastases of patients with lung and breast cancer. Clin. Transl. Sci. https://doi.org/10.1111/cts.12978 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bronger, H. et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. 65, 11419–11428 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Tiwary, S. et al. Metastatic brain tumors disrupt the blood-brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter Mfsd2a. Sci. Rep. 8, 8267 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pernet-Gallay, K. et al. Vascular permeability in the RG2 glioma model can be mediated by macropinocytosis and be independent of the opening of the tight junction. J. Cereb. Blood Flow Metab. 37, 1264–1275 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Gril, B. et al. A HER2 antibody drug conjugate controls growth of breast cancer brain metastasis in hematogenous xenograft models, with heterogeneous blood-tumor barrier penetration unlinked to a passive marker. Neuro-oncology 22, 1625–1636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, S. T. et al. Loss of pericytes in radiation necrosis after glioblastoma treatments. Mol. Neurobiol. 55, 4918–4926 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Valdor, R. et al. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget 8, 68614–68626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Miroshnikova, Y. A. et al. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18, 1336–1345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morad, G. et al. Cdc42-dependent transfer of mir301 from breast cancer-derived extracellular vesicles regulates the matrix modulating ability of astrocytes at the blood-brain barrier. Int. J. Mol. Sci. 21, 17 (2020).

    Article  CAS  Google Scholar 

  72. Nduom, E. K., Yang, C. Z., Merrill, M. J., Zhuang, Z. P. & Lonser, R. R. Characterization of the blood-brain barrier of metastatic and primary malignant neoplasms Laboratory investigation. J. Neurosurg. 119, 427–433 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Brandao, M., Simon, T., Critchley, G. & Giamas, G. Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 67, 779–790 (2019).

    Article  PubMed  Google Scholar 

  74. Wasilewski, D., Priego, N., Fustero-Torre, C. & Valiente, M. Reactive astrocytes in brain metastasis. Front. Oncol. 7, 298 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Doron, H., Pukrop, T. & Erez, N. A blazing landscape: neuroinflammation shapes brain metastasis. Cancer Res. 79, 423–436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Disc. 5, 1164–1177 (2015).

    Article  CAS  Google Scholar 

  78. Samala, R. et al. Vinorelbine delivery and efficacy in the MDA-MB-231BR preclinical model of brain metastases of breast cancer. Mol. Pharmacol. 33, 2904–2919 (2016).

    CAS  Google Scholar 

  79. Askoxylakis, V. et al. Preclinical efficacy of ado-trastuzumab emtansine in the brain microenvironment. J. Natl Cancer Inst. 108, 10 (2016).

    Article  CAS  Google Scholar 

  80. Terrell-Hall, T. B., Nounou, M. I., El-Amrawy, F., Griffith, J. I. G. & Lockman, P. R. Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget 8, 83734–83744 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Taskar, K. S. et al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm. Res. 29, 770–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Nounou, M. I. et al. Anti-cancer antibody trastuzumab-melanotransferrin conjugate (BT2111) for the treatment of metastatic HER2+breast cancer tumors in the brain: an in-vivo study. Pharm. Res. 33, 2930–2942 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhou, Q. Y. et al. Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition. Clin. Cancer Res. 13, 4271–4279 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Hasegawa, H., Ushio, Y., Hayakawa, T., Yamada, K. & Mogami, H. Changes of the blood-brain-barrier in experimental metastatic brain-tumors. J. Neurosurg. 59, 304–310 (1983).

    Article  CAS  PubMed  Google Scholar 

  85. Osswald, M. et al. Impact of blood-brain barrier integrity on tumor growth and therapy response in brain metastases. Clin. Cancer Res. 22, 6078–6087 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Thomas, F. C. et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm. Res. 26, 2486–2494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, Y., Zheng, X. M., Gong, M. & Zhang, J. N. Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma. Oncotarget 7, 79387–79393 (2016).

    Google Scholar 

  88. Regina, A. et al. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol. Cancer Ther. 14, 129–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Mittapalli, R. K. et al. Paclitaxel-hyaluronic nanoconjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol. Cancer Ther. 12, 2389–2399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mohammad, A. S. et al. Liposomal irinotecan accumulates in metastatic lesions, crosses the blood–tumor barrier (BTB), and prolongs survival in an experimental model of brain metastases of triple negative breast cancer. Pharm. Res. 35, 31 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Henry, M. N., Chen, Y. H., McFadden, C. D., Simedrea, F. C. & Foster, P. J. In-vivo longitudinal MRI study: an assessment of melanoma brain metastases in a clinically relevant mouse model. Melanoma Res. 25, 127–137 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Murrell, D. H. et al. Understanding heterogeneity and permeability of brain metastases in murine models of HER2-positive breast cancer through magnetic resonance imaging: implications for detection and therapy. Transl. Oncol. 8, 176–184 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Murrell, D. H. et al. Evaluating changes to blood-brain barrier integrity in brain metastasis over time and after radiation treatment. Transl. Oncol. 9, 219–227 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Crowe, W. et al. MRI evaluation of the effects of whole brain radiotherapy on breast cancer brain metastasis. Int. J. Radiat. Biol. 95, 338–346 (2018).

    Article  CAS  Google Scholar 

  95. Thorsen, F. et al. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases. J. Control. Rel. 172, 812–822 (2013).

    Article  CAS  Google Scholar 

  96. Liu, L. B., Xue, Y. X. & Liu, Y. H. Bradykinin increases the permeability of the blood-tumor barrier by the caveolae-mediated transcellular pathway. J. Neurooncol. 99, 187–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Su, B. X. et al. Effect of retro-inverso isomer of bradykinin on size-dependent penetration of blood-brain tumor barrier. Small 14, 1702331 (2018).

    Article  CAS  Google Scholar 

  98. Morikawa, A. et al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro-oncology 17, 289–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Nakagawa, H. et al. CIS-diamminedichloroplatinum (CDDP) therapy for brain metastasis of lung cancer. I. Distribution within the central-nervous-system after intravenous and intracarotid infusion. J. Neurooncol. 16, 61–67 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Portnow, J. et al. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin. Cancer Res. 15, 7092–7098 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stewart, D. J. et al. Penetration of VP-16 (etoposide) into human intracerebral and extracerebral tumors. J. Neurooncol. 2, 133–139 (1984).

    CAS  PubMed  Google Scholar 

  102. Hofer, S. & Frei, K. Gefitinib concentrations in human glioblastoma tissue. J. Neurooncol. 82, 175–176 (2007).

    Article  PubMed  Google Scholar 

  103. Green, R. M. et al. Human central nervous-system and plasma pharmacology of mitoxantrone. J. Neurooncol. 6, 75–83 (1988).

    Article  CAS  PubMed  Google Scholar 

  104. Whittle, I. R., Malcolm, G., Jodrell, D. I. & Reid, M. Platinum distribution in malignant glioma following intraoperative intravenous infusion of carboplatin. Br. J. Neurosurg. 13, 132–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Fine, R. L. et al. Randomized study of paclitaxel and tamoxifen deposition into human brain tumors: implications for the treatment of metastatic brain tumors. Clin. Cancer Res. 12, 5770–5776 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Sasada, S. et al. Cu-64-DOTA-trastuzumab PET imaging for HER2-specific primary lesions of breast cancer. Ann. Oncol. 28, 2028–2029 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Dijkers, E. C. et al. Biodistribution of Zr-89-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 87, 586–592 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Pokorny, J. L. et al. The efficacy of the wee1 inhibitor MK-1775 combined with temozolomide is limited by heterogeneous distribution across the blood-brain barrier in glioblastoma. Clin. Cancer Res. 21, 1916–1924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, J. et al. Quantitative and mechanistic understanding of AZD1775 penetration across human blood-brain barrier in glioblastoma patients using an IVIVE-PBPK modeling approach. Clin. Cancer Res. 23, 7454–7466 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stupp, R. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1100–1108 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Murthy, R. K. et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med. 382, 597–609 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Murthy, R. et al. Tucatinib with capecitabine and trastuzumab in advanced HER2-positive metastatic breast cancer with and without brain metastases: a non-randomised, open-label, phase 1b study. Lancet Oncol. 19, 880–888 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, Y. et al. Premetastatic soil and prevention of breast cancer brain metastasis. Neuro-oncology 15, 891–903 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Sorensen, J. B., Hansen, H. H., Hansen, M. & Dombernowsky, P. Brain metastases in adenocarcinoma of the lung — frequency, risk groups, and prognosis. J. Clin. Oncol. 6, 1474–1480 (1988).

    Article  CAS  PubMed  Google Scholar 

  116. Chang, W. Y. et al. The impact of EGFR mutations on the incidence and survival of stages I to III NSCLC patients with subsequent brain metastasis. PLoS ONE 13, e0192161 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Varrone, A. et al. A PET study in healthy subjects of brain exposure of C-11-labelled osimertinib - A drug intended for treatment of brain metastases in non-small cell lung cancer. J. Cereb. Blood Flow Metab. 40, 799–807 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Ballard, P. et al. Preclinical Comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res. 22, 5130–5140 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. van Hoppe, S. et al. Brain accumulation of osimertinib and its active metabolite AZ5104 is restricted by ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein). Pharmacol. Res. 146, 9 (2019).

    Google Scholar 

  120. Higuchi, T. et al. Osimertinib regresses an EGFR-mutant cisplatinum-resistant lung adenocarcinoma growing in the brain in nude mice. Transl. Oncol. 12, 640–645 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Costa, D. B. et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J. Clin. Oncol. 33, 1881–U1841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gadgeel, S. M. et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 15, 1119–1128 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Kodama, T. et al. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother. Pharmacol. 74, 1023–1028 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Kroll, R. et al. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comaprison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery 43, 879–886 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Doolittle, N. et al. Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 88, 637–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Karmur, B. S. et al. Blood-brain barrier disruption in neuro-oncology: strategies, failures, and challenges to overcome. Front. Oncol. 10, 563840 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lin, Y. L., Wu, M. T. & Yang, F. Y. Pharmacokinetics of doxorubicin in glioblastoma multiforme following ultrasound-Induced blood-brain barrier disruption as determined by microdialysis. J. Pharm. Biomed. Anal. 149, 482–487 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Arvanitis, C. D. et al. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc. Natl Acad. Sci. USA 115, E8717–E8726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carpentier, A. et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl Med. 8, 343re2 (2016).

    Article  PubMed  CAS  Google Scholar 

  131. Carman, A. J., Mills, J. H., Krenz, A., Kim, D. G. & Bynoe, M. S. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J. Neurosci. 31, 13272–13280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jackson, S. et al. The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 15, 2 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Hashizume, K. & Black, K. L. Increased endothelial vesicular transport correlates with increased blood-tumor barrier permeability induced by bradykinin and leukotriene C4. J. Neuropathol. Exp. Neurol. 61, 725–735 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Prados, M. D. et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-Oncology 5, 96–103 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cote, J. et al. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS ONE 7, 17 (2012).

    Article  Google Scholar 

  136. Kotb, S. et al. Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase I trial. Theranostics 6, 418–427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Verry, C. et al. Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective. Sci. Adv. 6, eaay5279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ding, W. C. & Guo, L. Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int. J. Nanomed. 8, 4631–4638 (2013).

    Google Scholar 

  139. Liu, D. Z. et al. The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle. Nanomedicine 14, 991–1003 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Soe, Z. C. et al. Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells. Pharmaceutics 11, 63 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  141. Zheng, B. et al. Delivery of antisense oligonucleotide LOR-2501 using transferrin-conjugated polyethylenimine-based lipid nanoparticle. Anticancer Res. 39, 1785–1793 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Johnsen, K. B., Burkhart, A., Thomsen, L. B., Andresen, T. L. & Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol. 181, 101665 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl Med. 3, 84ra44 (2011).

    Article  PubMed  CAS  Google Scholar 

  144. Ruan, S. B. et al. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood-brain barrier transcytosis and programmed glioma targeting delivery. Adv. Funct. Mater. 28, 1802227 (2018).

    Article  CAS  Google Scholar 

  145. Regina, A. et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector angiopep-2. Br. J. Pharmacol. 155, 185–197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xin, H. L. et al. Anti-glioblastoma efficacy and safety of paclitaxel-loading angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials 33, 8167–8176 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Kumthekar, P. et al. ANG1005, a brain-penetrating peptide-drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin. Cancer Res. 26, 2789–2799 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Hong, S. S., Oh, K. T., Choi, H. G. & Lim, S. J. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics 11, 540 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  149. Vieira, D. B. & Gamarra, L. F. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int. J. Nanomed. 11, 5381–5414 (2016).

    Article  CAS  Google Scholar 

  150. Mok, T. S. et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376, 629–640 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Ramalingam, S. S. et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Zimmer, A. S. et al. Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future Oncol. 16, 899–909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Palmieri, D. et al. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin. Cancer Res. 20, 2727–2739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mittapalli, R. K. et al. Quantitative fluorescence microscopy measures vascular pore size in primary and metastatic brain tumors. Cancer Res. 77, 238–246 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Shah, N. et al. Drug resistance occurred in a newly characterized preclinical model of lung cancer brain metastasis. BMC Cancer 20, 292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chaves, C. et al. Characterization of the blood-brain barrier integrity and the brain transport of SN-38 in an orthotopic xenograft rat model of diffuse intrinsic pontine glioma. Pharmaceutics 12, 399 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  157. Samala, R. et al. Vinorelbine delivery and efficacy in the MDA-MB-231BR preclinical model of brain metastases of breast cancer. Pharm. Res. 33, 2904–2919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, H. L. et al. Pharmacodynamic and therapeutic investigation of focused ultrasound-induced blood-brain barrier opening for enhanced temozolomide delivery in glioma treatment. PLoS ONE 9, e114311 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Becker, C. M. et al. Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro-Oncology 17, 1210–1219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Phillips, G. D. L. et al. Trastuzumab uptake and its relation to efficacy in an animal model of HER2-positive breast cancer brain metastasis. Breast Cancer Res. Treat. 164, 581–591 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Valiente, M. et al. Brain metastasis cell lines panel: a public resource of organotropic cell lines. Cancer Res. 80, 4314–4323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cruz, W. A. et al. Development of a preclinical model of spontaneous human melanoma CNS metastasis. Clin. Exp. Metastasis 26, 930 (2009).

    Google Scholar 

  163. Vaubel, R. A. et al. Genomic and phenotypic characterization of a broad panel of patient-derived xenografts reflects the diversity of glioblastoma. Clin. Cancer Res. 26, 1094–1104 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Helms, H. C. et al. In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab. 36, 862–890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks M. Gilbert, A. Zimmer, W. D. Figg, B. Gril, I. Khan and S. Lipkowitz for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Steeg.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks Twan Lammers, Seyed Alireza Mansouri, Timothy Phoenix and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steeg, P.S. The blood–tumour barrier in cancer biology and therapy. Nat Rev Clin Oncol 18, 696–714 (2021). https://doi.org/10.1038/s41571-021-00529-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00529-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer