Skip to main content
Log in

Effects of strong magnetic fields on the hadron-quark deconfinement transition

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The aim of the present work is to investigate the effects of strong magnetic fields on the hadron-quark phase transition point at zero temperature. To describe the hadronic phase, a relativistic mean field (RMF) model is used and to describe the quark phase a density dependent quark mass model (DDQM) is employed. As compared with the results obtained with non-magnetised matter, we observe a shift of the transition point towards higher pressures and, generally also towards higher chemical potentials. An investigation of the phase transitions that could sustain hybrid stars is also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All results obtained in this work are either numerical or analytical, hence, there is no associated data.]

References

  1. C. Ratti, M.A. Thaler, W. Weise, Phases of QCD: Lattice thermodynamics and a field theoretical model. Phys. Rev. D 73, 014019 (2006)

  2. L. Mclerran, Inhomogeneous and quarkyonic phases of high density QCD. PoS CPOD2014, 046 (2015)

    Google Scholar 

  3. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providência, Qcd critical end point under strong magnetic fields. Phys. Rev. D 85, 091901 (2012)

    Article  ADS  Google Scholar 

  4. P. Costa, M. Ferreira, H. Hansen, D.P. Menezes, C. Providência, Phase transition and critical end point driven by an external magnetic field in asymmetric quark matter. Phys. Rev. D 89, 056013 (2014)

    Article  ADS  Google Scholar 

  5. H. Müller, The deconfinement phase transition in asymmetric matter. Nucl. Phys. A 618(3), 349–370 (1997)

    Article  ADS  Google Scholar 

  6. M. Di Toro, A. Drago, T. Gaitanos, V. Greco, A. Lavagno, Testing deconfinement at high isospin density. Nucl. Phys. A 775(1–2), 102–126 (2006)

    Article  ADS  Google Scholar 

  7. R. Cavagnoli, C. Providência, D.P. Menezes, Hadron-quark phase transition in asymmetric matter with boson condensation. Phys. Rev. C 83, (2011)

  8. K.D. Marquez, D.P. Menezes, Phase transition in compact stars: nucleation mechanism and \(\gamma \)-ray bursts revisited. J. Cosmol. Astropart. Phys. 12, 028 (2017)

    Article  ADS  Google Scholar 

  9. C.A. Graeff, M.D. Alloy, K.D. Marquez, C. Providência, D.P. Menezes, Hadron-quark phase transition: the qcd phase diagram and stellar conversion. J. Cosmol. Astropart. Phys. 2019(01), 024–024 (2019)

    Article  Google Scholar 

  10. R.C. Duncan, C. Thompson, Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. Lett. 392, L9 (1992)

    Article  ADS  Google Scholar 

  11. C. Thompson, R.C. Duncan, The soft gamma repeaters as very strongly magnetized neutron stars – I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 275(2), 255–300 (1995)

    Article  ADS  Google Scholar 

  12. C. Thompson, R .C. Duncan, The soft gamma repeaters as very strongly magnetized neutron stars. II. quiescent neutrino, X-ray, and Alfven wave emission. Astrophys. J. 473(1), 322–342 (1996)

    Article  ADS  Google Scholar 

  13. V.V. Usov, Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature 357, 472–474 (1992)

    Article  ADS  Google Scholar 

  14. S.A. Olausen, V.M. Kaspi, The McGill magnetar catalog. Astrophys. J. Suppl. 212(1), 6 (2014)

    Article  ADS  Google Scholar 

  15. N.K. Glendenning, S.A. Moszkowski, Reconciliation of neutron-star masses and binding of the \({\Lambda }\) in hypernuclei. Phys. Rev. Lett. 67, 2414–2417 (1991)

    Article  ADS  Google Scholar 

  16. C.J. Xia, G.X. Peng, S.W. Chen, Z.Y. Lu, J.F. Xu, Thermodynamic consistency, quark mass scaling, and properties of strange matter. Phys. Rev. D 89, 105027 (2014)

    Article  ADS  Google Scholar 

  17. E. Annala, T. Gorda, A. Kurkela, J. Nättilä, A. Vuorinen, Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 16(9), 907–910 (2020)

    Article  Google Scholar 

  18. I. Bombaci, D. Logoteta, Quark deconfinement in neutron stars and astrophysical implications. Int. J. Mod. Phys. D 26(2), 1730004 (2017)

    Article  ADS  Google Scholar 

  19. M. Strickland, V. Dexheimer, D.P. Menezes, Bulk properties of a Fermi gas in a magnetic field. Phys. Rev. D 86, 125032 (2012)

    Article  ADS  Google Scholar 

  20. R.H. Casali, L.B. Castro, D.P. Menezes, Hadronic and hybrid stars subject to density-dependent magnetic fields. Phys. Rev. C 89, 015805 (2014)

    Article  ADS  Google Scholar 

  21. M. Dutra, O. Lourenço, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providência, S. Typel, J.R. Stone, Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. C 90(5), 55203 (2014)

    Article  ADS  Google Scholar 

  22. M. Dutra, O. Lourenço, D.P. Menezes, Stellar properties and nuclear matter constraints. Phys. Rev. C 93(2), 25806 (2016)

    Article  ADS  Google Scholar 

  23. C.V. Flores, L.L. Lopes, L.B. Castro, et al. Gravitational wave signatures of highly magnetized neutron stars. Eur. Phys. J. C 80, 1142 (2020)

  24. L.L. Lopes, D.P. Menezes, On magnetized neutron stars 2015(08), 002 (2015)

  25. T. Brendan, F.J. Reed, C .J. Fattoyev, Horowitz, J. Piekarewicz, Implications of PREX-2 on the equation of state of neutron-rich matter. Phys. Rev. Lett. 126, 172503 (2021)

    Article  ADS  Google Scholar 

  26. M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, Quark deconfinement in high-mass neutron stars. Phys. Rev. C 89, 015806 (2014)

    Article  ADS  Google Scholar 

  27. S.K. Biswal, Effects of 0-meson on the EOS of hyperon star in a relativistic mean field model. AIP Conf. Proc. 2127(1), 020031 (2019)

    Article  Google Scholar 

  28. Y. Lim, C.H. Lee, Y. Oh, Effective interactions of hyperons and mass-radius relation of neutron stars. Phys. Rev. D 97, 023010 (2018)

    Article  ADS  Google Scholar 

  29. B.K. Pradhan, D. Chatterjee, Effect of hyperons on \(f\)-mode oscillations in neutron stars. Phys. Rev. C 103, 035810 (2021)

    Article  ADS  Google Scholar 

  30. X. Mu, X. Zhou, G. He. Constraints of observational mass of neutron stars on the saturation parameters of nuclear matter with SU(6) symmetry. Eur. Phys. J. Plus 136, 99(2021). https://doi.org/10.1140/epjp/s13360-021-01087-7

  31. H.S. Sahoo, R. Mishra, D.K. Mohanty, P.K. Panda, N. Barik, Neutron star matter with strange interactions within constraints by gw170817 in a relativistic quark model. Phys. Rev. C 99, 055803 (2019)

    Article  ADS  Google Scholar 

  32. E. Gourgoulhon, P. Grandclément, J.A. Marck, J. Novak, K. Taniguchi, et al. Langage Objet pour la RElativité NumériquE (2008). https://lorene.obspm.fr/. Accessed 04 Jun 2021

  33. D. Chatterjee, J. Novak, M. Oertel, Magnetic field distribution in magnetars. Phys. Rev. C 99, 055811 (2019)

    Article  ADS  Google Scholar 

  34. D.P. Menezes, L.L. Lopes, Quark matter under strong magnetic fields. Eur. Phys. J. A 52(2), 17 (2016)

    Article  ADS  Google Scholar 

  35. D. Bandyopadhyay, S. Chakrabarty, S. Pal, Quantizing magnetic field and quark-hadron phase transition in a neutron star. Phys. Rev. Lett. 79, 2176–2179 (1997)

    Article  ADS  Google Scholar 

  36. M.D. Alloy, D.P. Menezes, Maxwell equation violation by density dependent magnetic fields in neutron stars. Int. J. Mod. Phys. Conf. Ser. 45, 1760031 (2017)

    Article  Google Scholar 

  37. A.A. Isayev, Stability of magnetized strange quark matter in the mit bag model with a density dependent bag pressure. Phys. Rev. C 91, 015208 (2015)

    Article  ADS  Google Scholar 

  38. G.X. Peng, A. Li, U. Lombardo, Deconfinement phase transition in hybrid neutron stars from the brueckner theory with three-body forces and a quark model with chiral mass scaling. Phys. Rev. C 77, 065807 (2008)

    Article  ADS  Google Scholar 

  39. S. Chakrabarty, Equation of state of strange quark matter and strange star. Phys. Rev. D 43, 627–630 (1991)

    Article  ADS  Google Scholar 

  40. G.X. Peng, H.C. Chiang, B.S. Zou, P.Z. Ning, S.J. Luo, Thermodynamics, strange quark matter, and strange stars. Phys. Rev. C 62, 025801 (2000)

    Article  ADS  Google Scholar 

  41. X.P. Zheng, X.W. Liu, M. Kang, S. Yang, Bulk viscosity of strange quark matter in a density-dependent quark mass model and dissipation of the \(r\) mode in strange stars. Phys. Rev. C 70, 015803 (2004)

    Article  ADS  Google Scholar 

  42. B.C. Backes, E. Hafemann, I. Marzola, D.P. Menezes, Density–dependent quark mass model revisited: thermodynamic consistency, stability windows and stellar properties. J. Phys. G Nucl. Part. Phys. 48, 055104

  43. A.R. Bodmer, Collapsed nuclei. Phys. Rev. D 4(6), 1601–1606 (1971)

    Article  ADS  Google Scholar 

  44. E. Witten, Cosmic separation of phases. Phys. Rev. D 30(2), 272–285 (1984)

    Article  ADS  Google Scholar 

  45. M.L. Olesen, J. Madsen, Nucleation of quark matter bubbles in neutron stars. Phys. Rev. D 49, 2698–2702 (1994)

    Article  ADS  Google Scholar 

  46. I. Bombaci, I. Parenti, I. Vidaña, Quark deconfinement and implications for the radius and the limiting mass of compact stars. Astrophys. J. 614(1), 314 (2004)

  47. V. Dexheimer, D.P. Menezes, M. Strickland, The influence of strong magnetic fields on proto-quark stars. J. Phys. G Nucl. Part. Phys. 41(1), 015203 (2013)

    Article  ADS  Google Scholar 

  48. F.R. González, A.M. Pérez, Stability window and mass–radius relation for magnetized strange quark stars. J. Phys. G Nucl. Part. Phys. 36(7), 075202 (2009)

    Article  Google Scholar 

  49. X.J. Wen, S.Z. Su, D.H. Yang, G.X. Peng, Magnetized strange quark matter in a quasiparticle description. Phys. Rev. D 86, 034006 (2012)

    Article  ADS  Google Scholar 

  50. R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364 (1939)

    Article  ADS  MATH  Google Scholar 

  51. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55, 374 (1939)

    Article  ADS  MATH  Google Scholar 

  52. G. Baym, C. Pethick, P. Sutherland, The ground state of matter at high densities: equation of state and stellar models. Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  53. M. Bocquet, S. Bonazzola, E. Gourgoulhon, J. Novak, Rotating neutron star models with magnetic field. Astron. Astrophys. 301, 757 (1995)

    ADS  Google Scholar 

  54. C.Y. Cardall, M. Prakash, J.M. Lattimer, Effects of strong magnetic fields on neutron star structure. Astrophys. J. 554, 322–339 (2001)

    Article  ADS  Google Scholar 

  55. J. Frieben, L. Rezzolla, Equilibrium models of relativistic stars with a toroidal magnetic field. Mon. Not. R. Astron. Soc. 427, 3406–3426 (2012)

    Article  ADS  Google Scholar 

  56. A.G. Pili, N. Bucciantini, L. Del Zanna, Axisymmetric equilibrium models for magnetized neutron stars in General Relativity under the Conformally Flat Condition. Mon. Not. R. Astron. Soc. 439, 3541–3563 (2014)

    Article  ADS  Google Scholar 

  57. D.B. Melrose, R. Fok, D.P. Menezes, Pair emission from bare magnetized strange stars. Mon. Not. R. Astron. Soc. 371, 204–210 (2006)

    Article  ADS  Google Scholar 

  58. D.P. Menezes, C. Providencia, D.B. Melrose, Quark stars within relativistic models. J. Phys. G 32, 1081–1096 (2006)

    Article  ADS  Google Scholar 

  59. D.G. Yakovlev, P. Haensel, A.Y. Potekhin, Neutron Stars 1: Equation of State and Structure (Springer, New York, 2007)

    Google Scholar 

Download references

Acknowledgements

This work is a part of the project INCT-FNA Proc. No. 464898/2014-5. D.P.M. and K.D.M. are partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) respectively under grant 301155.2017-8 and with a doctorate scholarship. B.C.B is supported by Coordenação de Aperfeiçoamanto de Pessoal de Nível Superior (CAPES) with a M.Sc. scholarship. B.C.B. thanks fruitful discussions with Eduardo Hafemann about the convergence of the quark matter numerical code.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Betânia C. T. Backes or Kauan D. Marquezb.

Additional information

Communicated by Carsten Urbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backes, B.C.T., Marquezb, K.D. & Menezes, D.P. Effects of strong magnetic fields on the hadron-quark deconfinement transition. Eur. Phys. J. A 57, 229 (2021). https://doi.org/10.1140/epja/s10050-021-00544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00544-2

Navigation