Skip to main content
Log in

Measuring bulk and surface acoustic modes in diamond by angle-resolved Brillouin spectroscopy

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The acoustic modes of diamond are not only of profound significance for studying its thermal conductivity, mechanical properties, and optical properties, but also play a definite role in the performance of high-frequency and high-power acoustic wave devices. Here, we report on the bulk acoustic waves (BAWs) and surface acoustic waves (SAWs) of single-crystal diamond using angle-resolved Brillouin light scattering (BLS) spectroscopy. We identify two high-speed surface skimming bulk waves (SSBW) with acoustic velocities of 1.277×106 and 1.727×106 cm/s, respectively. Furthermore, we obtain the relationship between the velocity of arbitrary BAWs and that of BAWs propagating along the high-symmetric axis at different incident angles. In the community of diamond-based acoustic studies, our results may provide a valuable reference for fundamental research and device engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mishra, and R. Bray, Phys. Rev. Lett. 39, 222 (1977).

    Article  ADS  Google Scholar 

  2. A. B. Singaraju, D. Bahl, and L. L. Stevens, AAPS Pharmscitech. 20, 109 (2019).

    Article  Google Scholar 

  3. K. S. Olsson, K. An, and X. Li, J. Phys. D-Appl. Phys. 51, 133001 (2018).

    Article  ADS  Google Scholar 

  4. B. Liu, X. Chen, H. L. Cai, M. A. Mohammad, X. G. Tian, L. Q. Tao, Y. Yang, and T. L. Ren, J. Semicond. 37, 021001 (2016).

    Article  Google Scholar 

  5. M. Knapp, R. Hoffmann, V. Lebedev, V. Cimalla, and O. Ambacher, Nanotechnology 29, 105302 (2018).

    Article  ADS  Google Scholar 

  6. R. Aigner, and G. Fattinger, in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (Transducers & Eurosensors XXXIII, Berlin, 2019), pp. 523–526.

    Book  Google Scholar 

  7. K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation (Springer, Berlin, Heidelberg, 2000), pp. 1–23.

    Book  Google Scholar 

  8. S. Evangelou, Phys. Lett. A 381, 1624 (2017).

    Article  ADS  Google Scholar 

  9. S. Yadav, A. Pamnani, D. Sharma, A. Gedam, A. Kumar, and N. Sharma, J. Semicond. 40, 052901 (2019).

    Article  ADS  Google Scholar 

  10. S. Zhang, R. Lu, H. Zhou, S. Link, Y. Yang, Z. Li, K. Huang, X. Ou, and S. Gong, IEEE Trans. Microwave Theor. Tech. 68, 3653 (2020).

    Article  ADS  Google Scholar 

  11. V. Mortet, O. Williams, and K. Haenen, in Diamond-based acoustic devices: Physics and Applications of CVD Diamond, edited by S. Koizumi, C. Nebel, and M. Nesladek (Wiley-VCH, Weinheim, 2008), pp. 177–197.

  12. L. Wang, S. Chen, J. Zhang, J. Zhou, C. Yang, Y. Chen, and H. Duan, Appl. Phys. Lett. 113, 093503 (2018).

    Article  ADS  Google Scholar 

  13. D. Mukherjee, F. J. Oliveira, R. F. Silva, J. F. Carreira, L. Rino, M. R. Correia, S. Z. Rotter, L. N. Alves, and J. C. Mendes, Phys. Status Solidi C 13, 53 (2016).

    Article  ADS  Google Scholar 

  14. S. I. Burkov, O. P. Zolotova, B. P. Sorokin, P. P. Turchin, and V. S. Talismanov, J. Acoust. Soc. Am. 143, 16 (2018).

    Article  ADS  Google Scholar 

  15. R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, and P. J. Leek, Nat. Commun. 8, 975 (2017), arXiv: 1703.04495.

    Article  ADS  Google Scholar 

  16. S. L. Ren, Q. H. Tan, and J. Zhang, J. Semicond. 40, 071903 (2019).

    Article  ADS  Google Scholar 

  17. S. Maity, L. Shao, S. Bogdanović, S. Meesala, Y. I. Sohn, N. Sinclair, B. Pingault, M. Chalupnik, C. Chia, L. Zheng, K. Lai, and M. Lončar, Nat. Commun. 11, 193 (2020), arXiv: 1910.09710.

    Article  ADS  Google Scholar 

  18. S. Meesala, Y. I. Sohn, B. Pingault, L. Shao, H. A. Atikian, J. Holzgrafe, M. Gündoğan, C. Stavrakas, A. Sipahigil, C. Chia, R. Evans, M. J. Burek, M. Zhang, L. Wu, J. L. Pacheco, J. Abraham, E. Bielejec, M. D. Lukin, M. Atatüre, and M. Lončar, Phys. Rev. B 97, 205444 (2018), arXiv: 1801.09833.

    Article  ADS  Google Scholar 

  19. D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. Bleszynski Jayich, J. Opt. 19, 033001 (2017), arXiv: 1609.00418.

    Article  ADS  Google Scholar 

  20. D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, Phys. Rev. Lett. 116, 143602 (2016), arXiv: 1603.03804.

    Article  ADS  Google Scholar 

  21. J. M. Lai, Y. R. Xie, and J. Zhang, Nano Res. 14, 1711 (2021).

    Article  Google Scholar 

  22. H. Sussner, J. Pelous, M. Schmidt, and R. Vacher, Solid State Commun. 36, 123 (1980).

    Article  ADS  Google Scholar 

  23. J. L. Warren, J. L. Yarnell, G. Dolling, and R. A. Cowley, Phys. Rev. 158, 805 (1967).

    Article  ADS  Google Scholar 

  24. B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).

    Article  ADS  Google Scholar 

  25. H. J. McSkimin, and P. Andreatch Jr., J. Appl. Phys. 43, 2944 (1972).

    Article  ADS  Google Scholar 

  26. M. H. Grimsditch, and A. K. Ramdas, Phys. Rev. B 11, 3139 (1975).

    Article  ADS  Google Scholar 

  27. I. Motochi, B. A. Mathe, S. R. Naidoo, and T. E. Derry, Mater. Today-Proc. 3, S145 (2016).

    Article  Google Scholar 

  28. L. Brillouin, Ann. Phys. 9, 88 (1922).

    Article  Google Scholar 

  29. L. I. Mandelstam, Z. Russ. Fiz-Khim. Ova. 58, 381 (1926).

    Google Scholar 

  30. J. R. Sanderocock, Solid State Commun. 26, 547 (1978).

    Article  ADS  Google Scholar 

  31. P. K. Misra, Physics of Condensed Matter (Academic Press, London, 2012), pp. 1–35.

    Book  Google Scholar 

  32. P. Y. Yu, and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, Heidelberg, 2003), pp. 17–106.

    Google Scholar 

  33. T. Wu, J. Shang, C. Yang, X. Zhang, H. Yu, Q. Mao, X. He, and Z. Chen, AIP Adv. 8, 015210 (2018).

    Article  ADS  Google Scholar 

  34. X. Jiang, J. V. Harzer, B. Hillebrands, C. Wild, and P. Koidl, Appl. Phys. Lett. 59, 1055 (1991).

    Article  ADS  Google Scholar 

  35. P. Djemia, C. Dugautier, T. Chauveau, E. Dogheche, M. I. De Barros, and L. Vandenbulcke, J. Appl. Phys. 90, 3771 (2001).

    Article  ADS  Google Scholar 

  36. E. Glushkov, N. Glushkova, and C. Zhang, J. Appl. Phys. 112, 064911 (2012).

    Article  ADS  Google Scholar 

  37. F. Monticone, and A. Alu, Proc. IEEE 103, 793 (2015).

    Article  Google Scholar 

  38. B. Köhler, M. Barth, P. Krüger, and F. Schubert, Appl. Phys. Lett. 101, 074101 (2012).

    Article  ADS  Google Scholar 

  39. A. A. Maradudin, and A. R. McGurn, Phys. Rev. B 39, 8732 (1989).

    Article  ADS  Google Scholar 

  40. J. S. Bach, and H. Bruus, Phys. Rev. E 100, 023104 (2019), arXiv: 1905.09132.

    Article  ADS  Google Scholar 

  41. K. H. Yen, K. F. Lau, and R. S. Kagiwada, Electron. Lett. 15, 206 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Additional information

This work was supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300804, and 2016YFA0301200), the Beijing Natural Science Foundation (Grant No. JQ18014), and the National Natural Science Foundation of China (Grant Nos. 12074371, and 51527901).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Ren, S., Gao, Y. et al. Measuring bulk and surface acoustic modes in diamond by angle-resolved Brillouin spectroscopy. Sci. China Phys. Mech. Astron. 64, 287311 (2021). https://doi.org/10.1007/s11433-020-1710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1710-6

Keywords

Navigation