Skip to main content
Log in

On the anomalous low-resistance state and exceptional Hall component in hard-magnetic Weyl nanoflakes

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Magnetic topological materials, which combine magnetism and topology, are expected to host emerging topological states and exotic quantum phenomena. In this study, with the aid of greatly enhanced coercive fields in high-quality nanoflakes of the magnetic Weyl semimetal Co3Sn2S2, we investigate anomalous electronic transport properties that are difficult to reveal in bulk Co3Sn2S2 or other magnetic materials. When the magnetization is antiparallel to the applied magnetic field, the low longitudinal resistance state occurs, which is in sharp contrast to the high resistance state for the parallel case. Meanwhile, an exceptional Hall component that can be up to three times larger than conventional anomalous Hall resistivity is also observed for transverse transport. These anomalous transport behaviors can be further understood by considering nonlinear magnetic textures and the chiral magnetic field associated with Weyl fermions, extending the longitudinal and transverse transport physics and providing novel degrees of freedom in the spintronic applications of emerging topological magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018), arXiv: 1712.06722.

    Article  Google Scholar 

  2. Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681 (2018), arXiv: 1712.09947.

    Article  ADS  Google Scholar 

  3. D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen, Science 365, 1282 (2019), arXiv: 1909.09580.

    Article  ADS  Google Scholar 

  4. N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Science 365, 1286 (2019), arXiv: 1903.00509.

    Article  ADS  Google Scholar 

  5. H. M. Weng, Sci. China-Phys. Mech. Astron. 62, 127031 (2019).

    Article  ADS  Google Scholar 

  6. C. Liu, J. L. Shen, J. C. Gao, C. J. Yi, D. Liu, T. Xie, L. Yang, S. Danilkin, G. C. Deng, W. H. Wang, S. L. Li, Y. G. Shi, H. M. Weng, E. K. Liu, and H. Q. Luo, Sci. China-Phys. Mech. Astron. 64, 217062 (2020), arXiv: 2006.07339.

    Article  ADS  Google Scholar 

  7. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Science 340, 167 (2013), arXiv: 1605.08829.

    Article  ADS  Google Scholar 

  8. L. Muechler, E. Liu, J. Gayles, Q. Xu, C. Felser, and Y. Sun, Phys. Rev. B 101, 115106 (2020), arXiv: 1712.08115.

    Article  ADS  Google Scholar 

  9. K. Kobayashi, Y. Ominato, and K. Nomura, J. Phys. Soc. Jpn. 87, 073707 (2018), arXiv: 1802.04536.

    Article  ADS  Google Scholar 

  10. K. Kobayashi, M. Takagaki, and K. Nomura, Phys. Rev. B 100, 161301 (2019), arXiv: 1908.02727.

    Article  ADS  Google Scholar 

  11. S. Howard, L. Jiao, Z. Wang, P. Vir, C. Shekhar, C. Felser, T. Hughes, and V. Madhavan, arXiv: 191011205.

  12. K. Fujiwara, J. Ikeda, J. Shiogai, T. Seki, K. Takanashi, and A. Tsukazaki, Jpn. J. Appl. Phys. 58, 050912 (2019).

    Article  ADS  Google Scholar 

  13. S. Li, G. Gu, E. Liu, P. Cheng, B. Feng, Y. Li, L. Chen, and K. Wu, ACS Appl. Electron. Mater. 2, 126 (2020).

    Article  Google Scholar 

  14. S. Y. Yang, J. Noky, J. Gayles, F. K. Dejene, Y. Sun, M. Dörr, Y. Skourski, C. Felser, M. N. Ali, E. Liu, and S. S. P. Parkin, Nano Lett. 20, 7860 (2020).

    Article  ADS  Google Scholar 

  15. M. Tanaka, Y. Fujishiro, M. Mogi, Y. Kaneko, T. Yokosawa, N. Kanazawa, S. Minami, T. Koretsune, R. Arita, S. Tarucha, M. Yamamoto, and Y. Tokura, Nano Lett. 20, 7476 (2020), arXiv: 2009.07431.

    Article  ADS  Google Scholar 

  16. C. X. Liu, P. Ye, and X. L. Qi, Phys. Rev. B 87, 235306 (2013), arXiv: 1204.6551.

    Article  ADS  Google Scholar 

  17. Y. Araki, A. Yoshida, and K. Nomura, Phys. Rev. B 94, 115312 (2016), arXiv: 1607.07012.

    Article  ADS  Google Scholar 

  18. A. G. Grushin, J. W. F. Venderbos, A. Vishwanath, and R. Ilan, Phys. Rev. X 6, 041046 (2016).

    Google Scholar 

  19. Y. Araki, and K. Nomura, Phys. Rev. Appl. 10, 014007 (2018), arXiv: 1711.03135.

    Article  ADS  Google Scholar 

  20. Y. Araki, Ann. Der Phys. 532, 1900287 (2019), arXiv: 1910.07774.

    Article  ADS  Google Scholar 

  21. J. Shen, Q. Zeng, S. Zhang, W. Tong, L. Ling, C. Xi, Z. Wang, E. Liu, W. Wang, G. Wu, and B. Shen, Appl. Phys. Lett. 115, 212403 (2019), arXiv: 2002.03940.

    Article  ADS  Google Scholar 

  22. J. M. Ziman, Electrons and Phonons: Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960).

    MATH  Google Scholar 

  23. G. Eguchi, K. Kuroda, K. Shirai, Y. Ando, T. Shinjo, A. Kimura, and M. Shiraishi, Phys. Rev. B 91, 235117 (2015), arXiv: 1505.05624.

    Article  ADS  Google Scholar 

  24. D. Chiba, M. Yamanouchi, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 96, 096602 (2006), arXiv: cond-mat/0601464.

    Article  ADS  Google Scholar 

  25. C. Haas, Phys. Rev. 168, 531 (1968).

    Article  ADS  Google Scholar 

  26. M. Viret, D. Vignoles, D. Cole, J. M. D. Coey, W. Allen, D. S. Daniel, and J. F. Gregg, Phys. Rev. B 53, 8464 (1996).

    Article  ADS  Google Scholar 

  27. J. M. D. Coey, A. E. Berkowitz, L. Balcells, F. F. Putris, and A. Barry, Phys. Rev. Lett. 80, 3815 (1998).

    Article  ADS  Google Scholar 

  28. J. M. D. Coey, A. E. Berkowitz, L. Balcells, F. F. Putris, and F. T. Parker, Appl. Phys. Lett. 72, 734 (1998).

    Article  ADS  Google Scholar 

  29. L. Klein, Y. Kats, A. F. Marshall, J. W. Reiner, T. H. Geballe, M. R. Beasley, and A. Kapitulnik, Phys. Rev. Lett. 84, 6090 (2000), arXiv: cond-mat/9912404.

    Article  ADS  Google Scholar 

  30. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  31. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

    Article  ADS  Google Scholar 

  32. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).

    Article  ADS  Google Scholar 

  33. H. R. Chang, J. Zhou, S. X. Wang, W. Y. Shan, and D. Xiao, Phys. Rev. B 92, 241103 (2015), arXiv: 1509.04741.

    Article  ADS  Google Scholar 

  34. M. V. Hosseini, and M. Askari, Phys. Rev. B 92, 224435 (2015), arXiv: 1510.03020.

    Article  ADS  Google Scholar 

  35. Y. Araki, and K. Nomura, Phys. Rev. B 93, 094438 (2016), arXiv: 1511.08381.

    Article  ADS  Google Scholar 

  36. M. A. Kassem, Y. Tabata, T. Waki, and H. Nakamura, Phys. Rev. B 96, 014429 (2017), arXiv: 1702.05627.

    Article  ADS  Google Scholar 

  37. Z. Guguchia, J. A. T. Verezhak, D. J. Gawryluk, S. S. Tsirkin, J. X. Yin, I. Belopolski, H. Zhou, G. Simutis, S. S. Zhang, T. A. Cochran, G. Chang, E. Pomjakushina, L. Keller, Z. Skrzeczkowska, Q. Wang, H. C. Lei, R. Khasanov, A. Amato, S. Jia, T. Neupert, H. Luetkens, and M. Z. Hasan, Nat. Commun. 11, 559 (2020).

    Article  ADS  Google Scholar 

  38. A. Sugawara, T. Akashi, M. A. Kassem, Y. Tabata, T. Waki, and H. Nakamura, Phys. Rev. Mater. 3, 104421 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EnKe Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52088101, and 11974394), the National Key R&D Program of China (Grant No. 2019YFA0704900), the Beijing Natural Science Foundation (Grant No. Z190009), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB33000000), the Scientific Instrument Developing Project of CAS (Grant No. ZDKYYQ20210003), Users with Excellence Program of Hefei Science Center CAS (Grant No. 2019HSC-UE009), and the Youth Innovation Promotion Association of CAS (Grant No. 2013002). Shu Zhang is supported by the National Science Foundation, United States (Grant No. DMR-1742928).

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information to

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Gu, G., Shi, G. et al. On the anomalous low-resistance state and exceptional Hall component in hard-magnetic Weyl nanoflakes. Sci. China Phys. Mech. Astron. 64, 287512 (2021). https://doi.org/10.1007/s11433-021-1715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1715-4

Keywords

Navigation