Skip to main content
Log in

Electrical transport properties of FeSe single crystal under high magnetic field

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Understanding the normal electronic state is crucial for unveiling the mechanism of unconventional superconductivity (SC). In this paper, by applying a magnetic field of up to 37 T on FeSe single crystals, we could reveal the normal-state transport properties after SC was completely suppressed. The normal-state resistivity exhibited a Fermi liquid behavior at low temperatures. Large orbital magnetoresistance (MR) was observed in the nematic state with H//c, whereas MR was negligible with H//ab. The magnitude of the orbital MR showed an unusual reduction, and Kohler’s rule was severely violated below 10–25 K; these were attributable to spin fluctuations. The results indicated that spin fluctuations played a paramount role in the normalstate transport properties of FeSe albeit the Fermi liquid nature was at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Coldea, and M. D. Watson, Annu. Rev. Condens. Matter Phys. 9, 125 (2018), arXiv: 1706.00338.

    Article  ADS  Google Scholar 

  2. A. E. Böhmer, and A. Kreisel, J. Phys.-Condens. Matter 30, 023001 (2018), arXiv: 1711.06473.

    Article  ADS  Google Scholar 

  3. T. Shibauchi, T. Hanaguri, and Y. Matsuda, arXiv: 2005.07315.

  4. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. 105, 14262 (2008).

    Article  ADS  Google Scholar 

  5. Q. Wang, Y. Shen, B. Pan, X. Zhang, K. Ikeuchi, K. Iida, A. D. Christianson, H. C. Walker, D. T. Adroja, M. Abdel-Hafiez, X. Chen, D. A. Chareev, A. N. Vasiliev, and J. Zhao, Nat. Commun. 7, 12182 (2016), arXiv: 1511.02485.

    Article  ADS  Google Scholar 

  6. T. Chen, Y. Chen, A. Kreisel, X. Lu, A. Schneidewind, Y. Qiu, J. T. Park, T. G. Perring, J. R. Stewart, H. Cao, R. Zhang, Y. Li, Y. Rong, Y. Wei, B. M. Andersen, P. J. Hirschfeld, C. Broholm, and P. Dai, Nat. Mater. 18, 709 (2019).

    Article  ADS  Google Scholar 

  7. J. P. Sun, K. Matsuura, G. Z. Ye, Y. Mizukami, M. Shimozawa, K. Matsubayashi, M. Yamashita, T. Watashige, S. Kasahara, Y. Matsuda, J. Q. Yan, B. C. Sales, Y. Uwatoko, J. G. Cheng, and T. Shibauchi, Nat. Commun. 7, 12146 (2016), arXiv: 1512.06951.

    Article  ADS  Google Scholar 

  8. S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009), arXiv: 0903.2143.

    Article  ADS  Google Scholar 

  9. X. F. Lu, N. Z. Wang, H. Wu, Y. P. Wu, D. Zhao, X. Z. Zeng, X. G. Luo, T. Wu, W. Bao, G. H. Zhang, F. Q. Huang, Q. Z. Huang, and X. H. Chen, Nat. Mater. 14, 325 (2015).

    Article  ADS  Google Scholar 

  10. B. Lei, J. H. Cui, Z. J. Xiang, C. Shang, N. Z. Wang, G. J. Ye, X. G. Luo, T. Wu, Z. Sun, and X. H. Chen, Phys. Rev. Lett. 116, 077002 (2016), arXiv: 1509.00620.

    Article  ADS  Google Scholar 

  11. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520 (2010), arXiv: 1012.2924.

    Article  ADS  Google Scholar 

  12. Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Chin. Phys. Lett. 29, 037402 (2012), arXiv: 1201.5694.

    Article  ADS  Google Scholar 

  13. B. L. Kang, M. Z. Shi, S. J. Li, H. H. Wang, Q. Zhang, D. Zhao, J. Li, D. W. Song, L. X. Zheng, L. P. Nie, T. Wu, and X. H. Chen, Phys. Rev. Lett. 125, 097003 (2020), arXiv: 1912.03508.

    Article  ADS  Google Scholar 

  14. S. Licciardello, J. Buhot, J. Lu, J. Ayres, S. Kasahara, Y. Matsuda, T. Shibauchi, and N. E. Hussey, Nature 567, 213 (2019).

    Article  ADS  Google Scholar 

  15. S. Licciardello, N. Maksimovic, J. Ayres, J. Buhot, M. Čulo, B. Bryant, S. Kasahara, Y. Matsuda, T. Shibauchi, V. Nagarajan, J. G. Analytis, and N. E. Hussey, Phys. Rev. Res. 1, 023011 (2019), arXiv: 1903.05679.

    Article  Google Scholar 

  16. M. Bristow, P. Reiss, A. A. Haghighirad, Z. Zajicek, S. J. Singh, T. Wolf, D. Graf, W. Knafo, A. McCollam, and A. I. Coldea, Phys. Rev. Res. 2, 013309 (2020), arXiv: 1904.02522.

    Article  Google Scholar 

  17. W. K. Huang, S. Hosoi, M. Čulo, S. Kasahara, Y. Sato, K. Matsuura, Y. Mizukami, M. Berben, N. E. Hussey, H. Kontani, T. Shibauchi, and Y. Matsuda, Phys. Rev. Res. 2, 033367 (2020), arXiv: 2008.06381.

    Article  Google Scholar 

  18. S. Kasahara, T. Watashige, T. Hanaguri, Y. Kohsaka, T. Yamashita, Y. Shimoyama, Y. Mizukami, R. Endo, H. Ikeda, K. Aoyama, T. Terashima, S. Uji, T. Wolf, H. von Löhneysen, T. Shibauchi, and Y. Matsuda, Proc. Natl. Acad. Sci. USA 111, 16309 (2014), arXiv: 1411.1232.

    Article  ADS  Google Scholar 

  19. J. L. Her, Y. Kohama, Y. H. Matsuda, K. Kindo, W. H. Yang, D. A. Chareev, E. S. Mitrofanova, O. S. Volkova, A. N. Vasiliev, and J. Y. Lin, Supercond. Sci. Technol. 28, 045013 (2015).

    Article  ADS  Google Scholar 

  20. S. Kasahara, Y. Sato, S. Licciardello, M. Culo, S. Arsenijević, T. Ottenbros, T. Tominaga, J. Böker, I. Eremin, T. Shibauchi, J. Wosnitza, N. E. Hussey, and Y. Matsuda, Phys. Rev. Lett. 124, 107001 (2020), arXiv: 1911.08237.

    Article  ADS  Google Scholar 

  21. A. E. Böhmer, F. Hardy, F. Eilers, D. Ernst, P. Adelmann, P. Schweiss, T. Wolf, and C. Meingast, Phys. Rev. B 87, 180505 (2013), arXiv: 1303.2026.

    Article  ADS  Google Scholar 

  22. M. D. Watson, T. Yamashita, S. Kasahara, W. Knafo, M. Nardone, J. Béard, F. Hardy, A. McCollam, A. Narayanan, S. F. Blake, T. Wolf, A. A. Haghighirad, C. Meingast, A. J. Schofield, H. v. Löhneysen, Y. Matsuda, A. I. Coldea, and T. Shibauchi, Phys. Rev. Lett. 115, 027006 (2015), arXiv: 1502.02922.

    Article  ADS  Google Scholar 

  23. S. Kasahara, T. Yamashita, A. Shi, R. Kobayashi, Y. Shimoyama, T. Watashige, K. Ishida, T. Terashima, T. Wolf, F. Hardy, C. Meingast, H. V. Löhneysen, A. Levchenko, T. Shibauchi, and Y. Matsuda, Nat. Commun. 7, 12843 (2016), arXiv: 1608.01829.

    Article  ADS  Google Scholar 

  24. A. Shi, T. Arai, S. Kitagawa, T. Yamanaka, K. Ishida, A. E. Böhmer, C. Meingast, T. Wolf, M. Hirata, and T. Sasaki, J. Phys. Soc. Jpn. 87, 013704 (2017), arXiv: 1712.04224.

    Article  ADS  Google Scholar 

  25. J. Li, B. Lei, D. Zhao, L. P. Nie, D. W. Song, L. X. Zheng, S. J. Li, B. L. Kang, X. G. Luo, T. Wu, and X. H. Chen, Phys. Rev. X 10, 011034 (2020), arXiv: 1903.05798.

    Google Scholar 

  26. Y. Nakajima, H. Shishido, H. Nakai, T. Shibauchi, K. Behnia, K. Izawa, M. Hedo, Y. Uwatoko, T. Matsumoto, R. Settai, Y. Ōnuki, H. Kontani, and Y. Matsuda, J. Phys. Soc. Jpn. 76, 024703 (2007), arXiv: cond-mat/0607827.

    Article  ADS  Google Scholar 

  27. J. M. Harris, Y. F. Yan, P. Matl, N. P. Ong, P. W. Anderson, T. Kimura, and K. Kitazawa, Phys. Rev. Lett. 75, 1391 (1995).

    Article  ADS  Google Scholar 

  28. K. Semba, and A. Matsuda, Phys. Rev. B 55, 11103 (1997).

    Article  ADS  Google Scholar 

  29. T. Kimura, S. Miyasaka, H. Takagi, K. Tamasaku, H. Eisaki, S. Uchida, K. Kitazawa, M. Hiroi, M. Sera, and N. Kobayashi, Phys. Rev. B 53, 8733 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianJun Ying or XianHui Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11888101, and 11534010), the National Key Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2019YFA0704900, 2016YFA0300201, and 2017YFA0303001), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant No. XDB25000000), Anhui Initiative in Quantum Information Technologies (Grant No. AHY160000), the Science Challenge Project of China (Grant No. TZ2016004), the Key Research Program of Frontier Sciences, CAS, China (Grant No. QYZDYSSW-SLH021), and the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000011, and WK2030020031). A portion of this work was performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cheng, Z., Shi, M. et al. Electrical transport properties of FeSe single crystal under high magnetic field. Sci. China Phys. Mech. Astron. 64, 287411 (2021). https://doi.org/10.1007/s11433-021-1702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1702-4

Keywords

Navigation