Skip to main content
Log in

Possible shape coexistence in Ne isotopes and the impurity effect of Λ hyperon

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The possible shape coexistence in even-even Ne isotopes and the impurity effects of the sΛ and pΛ hyperons are explored employing the multidimensionally constrained relativistic-mean-field (MDC-RMF) model with the PK1 parameter set for the NN interaction and PK1-Y1 for the ΛN interaction. The quadrupole deformation potential energy surfaces (PESs), nuclear deformations, nuclear radii, binding energies, and density distributions of the hypernuclei and core nuclei are examined. The possible shape coexistence in 24,26,28Ne is predicted with small energy differences of 140, 336, and 128 keV, respectively, between the two local energy minima. Different impurity effects of the sΛ and pΛ hyperons are revealed. The sΛ hyperon exhibits clear shrinkage effects, which reduce the nuclear size and facilitate a spherical nuclear shape. The prolate pΛ hyperon on the 1/2[110] orbital renders the nuclear shape more prolate, while the oblate pΛ hyperon on the 3/2[101] or 1/2[101] orbital renders the nuclei more oblate. Moreover, the Λ hyperon can increase the probabilities of the shape coexistence by reducing the energy differences between the two local energy minima, although the shape coexistence may disappear owing to the vanishment of one energy minimum on the flat energy surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Morinaga, Phys. Rev. 101, 254 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  2. K. Heyde, P. van Isacker, M. Waroquier, J. L. Wood, and R. Meyer, Phys. Rep. 102, 291 (1983).

    Article  ADS  Google Scholar 

  3. J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. van Duppen, Phys. Rep. 215, 101 (1992).

    Article  ADS  Google Scholar 

  4. K. Heyde, and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

    Article  ADS  Google Scholar 

  5. J. Bonn, G. Huber, H. J. Kluge, L. Kugler, and E. W. Otten, Phys. Lett. B 38, 308 (1972).

    Article  ADS  Google Scholar 

  6. H. J. Kluge, and W. Nörtershäuser, Spectrochim. Acta B-Atomic Spectr. 58, 1031 (2003).

    Article  ADS  Google Scholar 

  7. J. Bron, W. H. A. Hesselink, A. van Poelgeest, J. J. A. Zalmstra, M. J. Uitzinger, H. Verheul, K. Heyde, M. Waroquier, H. Vincx, and P. van Isacker, Nucl. Phys. A 318, 335 (1979).

    Article  ADS  Google Scholar 

  8. E. Cheifetz, R. C. Jared, S. G. Thompson, and J. B. Wilhelmy, Phys. Rev. Lett. 25, 38 (1970).

    Article  ADS  Google Scholar 

  9. P. Federman, and S. Pittel, Phys. Lett. B 69, 385 (1977).

    Article  ADS  Google Scholar 

  10. P. Federman, and S. Pittel, Phys. Rev. C 20, 820 (1979).

    Article  ADS  Google Scholar 

  11. U. Hager, A. Jokinen, V. V. Elomaa, T. Eronen, J. Hakala, A. Kankainen, S. Rahaman, J. Rissanen, I. D. Moore, S. Rinta-Antila, A. Saastamoinen, T. Sonoda, and J. Äystö, Nucl. Phys. A 793, 20 (2007).

    Article  ADS  Google Scholar 

  12. J. H. Hamilton, A. V. Ramayya, W. T. Pinkston, R. M. Ronningen, G. Garcia-Bermudez, H. K. Carter, R. L. Robinson, H. J. Kim, and R. O. Sayer, Phys. Rev. Lett. 32, 239 (1974).

    Article  ADS  Google Scholar 

  13. J. Styczen, J. Chevallier, B. Haas, N. Schulz, P. Taras, and M. Toulemonde, Nucl. Phys. A 262, 317 (1976).

    Article  ADS  Google Scholar 

  14. P. Bednarczyk, J. Styczeń, R. Broda, M. Lach, W. Mȩczyński, D. Bazzacco, F. Brandolini, G. de Angelis, S. Lunardi, L. Müller, N. H. Medina, D. R. Napoli, C. M. Petrache, C. Rossi Alvarez, F. Scarlassara, G. F. Segato, C. Signorini, and F. Soramel, Eur. Phys. J. A 2, 157 (1998).

    Article  ADS  Google Scholar 

  15. E. Ideguchi, D. G. Sarantites, W. Reviol, A. V. Afanasjev, M. Devlin, C. Baktash, R. V. F. Janssens, D. Rudolph, A. Axelsson, M. P. Carpenter, A. Galindo-Uribarri, D. R. LaFosse, T. Lauritsen, F. Lerma, C. J. Lister, P. Reiter, D. Seweryniak, M. Weiszflog, and J. N. Wilson, Phys. Rev. Lett. 87, 222501 (2001).

    Article  ADS  Google Scholar 

  16. E. K. Warburton, J. A. Becker, and B. A. Brown, Phys. Rev. C 41, 1147 (1990).

    Article  ADS  Google Scholar 

  17. F. Sarazin, H. Savajols, W. Mittig, F. Nowacki, N. A. Orr, Z. Ren, P. Roussel-Chomaz, G. Auger, D. Baiborodin, A. V. Belozyorov, C. Borcea, E. Caurier, Z. Dlouhý, A. Gillibert, A. S. Lalleman, M. Lewitowicz, S. M. Lukyanov, F. de Oliveira, Y. E. Penionzhkevich, D. Ridikas, H. Sakuraí, O. Tarasov, and A. de Vismes, Phys. Rev. Lett. 84, 5062 (2000).

    Article  ADS  Google Scholar 

  18. K. Heyde, and J. L. Wood, Phys. Scr. 91, 083008 (2016).

    Article  ADS  Google Scholar 

  19. A. N. Andreyev, M. Huyse, P. Van Duppen, L. Weissman, D. Ackermann, J. Gerl, F. P. Hessberger, S. Hofmann, A. Kleinböhl, G. Münzenberg, S. Reshitko, C. Schlegel, H. Schaffner, P. Cagarda, M. Matos, S. Saro, A. Keenan, C. Moore, C. D. O’Leary, R. D. Page, M. Taylor, H. Kettunen, M. Leino, A. Lavrentiev, R. Wyss, and K. Heyde, Nature 405, 430 (2000).

    Article  ADS  Google Scholar 

  20. P. E. Garrett, T. R. Rodríguez, A. D. Varela, K. L. Green, J. Bangay, A. Finlay, R. A. E. Austin, G. C. Ball, D. S. Bandyopadhyay, V. Bildstein, S. Colosimo, D. S. Cross, G. A. Demand, P. Finlay, A. B. Garnsworthy, G. F. Grinyer, G. Hackman, B. Jigmeddorj, J. Jolie, W. D. Kulp, K. G. Leach, A. C. Morton, J. N. Orce, C. J. Pearson, A. A. Phillips, A. J. Radich, E. T. Rand, M. A. Schumaker, C. E. Svensson, C. Sumithrarachchi, S. Triambak, N. Warr, J. Wong, J. L. Wood, and S. W. Yates, Phys. Rev. Lett. 123, 142502 (2019).

    Article  ADS  Google Scholar 

  21. O. Hashimoto, and H. Tamura, Prog. Particle Nucl. Phys. 57, 564 (2006).

    Article  ADS  Google Scholar 

  22. A. Feliciello, and T. Nagae, Rep. Prog. Phys. 78, 096301 (2015).

    Article  ADS  Google Scholar 

  23. A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88, 035004 (2016), arXiv: 1605.00557.

    Article  ADS  Google Scholar 

  24. T. T. Sun, E. Hiyama, H. Sagawa, H. J. Schulze, and J. Meng, Phys. Rev. C 94, 064319 (2016), arXiv: 1611.03661.

    Article  ADS  Google Scholar 

  25. T. T. Sun, C. J. Xia, S. S. Zhang, and M. S. Smith, Chin. Phys. C 42, 025101 (2018), arXiv: 1712.05569.

    Article  ADS  Google Scholar 

  26. C. J. Xia, G. X. Peng, T. T. Sun, W. L. Guo, D. H. Lu, and P. Jaikumar, Phys. Rev. D 98, 034031 (2018), arXiv: 1808.07655.

    Article  ADS  Google Scholar 

  27. T. T. Sun, S. S. Zhang, Q. L. Zhang, and C. J. Xia, Phys. Rev. D 99, 023004 (2019), arXiv: 1808.02207.

    Article  ADS  Google Scholar 

  28. K. Hagino, and J. M. Yao, in Relativistic Density Functional for Nuclear Struture (International Review of Nuclear Physics Vol 10), edited by J. Meng (World Scientific, Singapore, 2016), pp. 263–304.

  29. S. H. Ren, T. T. Sun, and W. Zhang, Phys. Rev. C 95, 054318 (2017), arXiv: 1704.05192.

    Article  ADS  Google Scholar 

  30. Z. X. Liu, C. J. Xia, W. L. Lu, Y. X. Li, J. N. Hu, and T. T. Sun, Phys. Rev. C 98, 024316 (2018).

    Article  ADS  Google Scholar 

  31. T. Motoba, H. Bando, and K. Ikeda, Prog. Theor. Phys. 70, 189 (1983).

    Article  ADS  Google Scholar 

  32. E. Hiyama, M. Kamimura, K. Miyazaki, and T. Motoba, Phys. Rev. C 59, 2351 (1999).

    Article  ADS  Google Scholar 

  33. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Prog. Theor. Phys. 97, 881 (1997).

    Article  ADS  Google Scholar 

  34. J. M. Yao, Z. P. Li, K. Hagino, M. T. Win, Y. Zhang, and J. Meng, Nucl. Phys. A 868–869, 12 (2011), arXiv: 1104.3200.

    Article  ADS  Google Scholar 

  35. K. Hagino, J. M. Yao, F. Minato, Z. P. Li, and M. Thi Win, Nucl. Phys. A 914, 151 (2013), arXiv: 1211.5871.

    Article  ADS  Google Scholar 

  36. D. Vretenar, W. Pöschl, G. A. Lalazissis, and P. Ring, Phys. Rev. C 57, R1060 (1998), arXiv: nucl-th/9709046.

    Article  ADS  Google Scholar 

  37. X. R. Zhou, A. Polls, H. J. Schulze, and I. Vidaña, Phys. Rev. C 78, 054306 (2008).

    Article  ADS  Google Scholar 

  38. H. F. Lü, J. Meng, S. Q. Zhang, and S. G. Zhou, Eur. Phys. J. A 17, 19 (2003).

    Article  ADS  Google Scholar 

  39. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Phys. Rev. C 53, 2075 (1996).

    Article  ADS  Google Scholar 

  40. H. F. Lu, and J. Meng, Chin. Phys. Lett. 19, 1775 (2002).

    Article  ADS  Google Scholar 

  41. W. L. Lu, Z. X. Liu, S. H. Ren, W. Zhang, and T. T. Sun, J. Phys. G-Nucl. Part. Phys. 44, 125104 (2017).

    Article  ADS  Google Scholar 

  42. M. T. Win, and K. Hagino, Phys. Rev. C 78, 054311 (2008), arXiv: 0808.3303.

    Article  ADS  Google Scholar 

  43. B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 84, 014328 (2011), arXiv: 1104.4638.

    Article  ADS  Google Scholar 

  44. M. Isaka, M. Kimura, A. Dote, and A. Ohnishi, Phys. Rev. C 83, 044323 (2011), arXiv: 1104.3940.

    Article  ADS  Google Scholar 

  45. B. C. Fang, W. Y. Li, C. F. Chen, J. W. Cui, X. R. Zhou, and Y. Y. Cheng, Eur. Phys. J. A 56, 11 (2020).

    Article  ADS  Google Scholar 

  46. E. S. Paul, R. Ma, C. W. Beausang, D. B. Fossan, W. F. Piel, S. Shi, N. Xu, and J. Zhang, Phys. Rev. Lett. 61, 42 (1988).

    Article  ADS  Google Scholar 

  47. X. H. Zhou, Y. B. Xing, M. L. Liu, Y. H. Zhang, Y. X. Guo, L. Ma, X. G. Lei, W. T. Guo, M. Oshima, Y. Toh, M. Koizumi, A. Osa, Y. Hatsukawa, F. R. Xu, and M. Sugawara, Phys. Rev. C 75, 034314 (2007).

    Article  ADS  Google Scholar 

  48. W. Nazarewicz, M. A. Riley, and J. D. Garrett, Nucl. Phys. A 512, 61 (1990).

    Article  ADS  Google Scholar 

  49. B. N. Lu, E. Hiyama, H. Sagawa, and S. G. Zhou, Phys. Rev. C 89, 044307 (2014), arXiv: 1403.5866.

    Article  ADS  Google Scholar 

  50. T. Nakamura, N. Kobayashi, Y. Kondo, Y. Satou, N. Aoi, H. Baba, S. Deguchi, N. Fukuda, J. Gibelin, N. Inabe, M. Ishihara, D. Kameda, Y. Kawada, T. Kubo, K. Kusaka, A. Mengoni, T. Motobayashi, T. Ohnishi, M. Ohtake, N. A. Orr, H. Otsu, T. Otsuka, A. Saito, H. Sakurai, S. Shimoura, T. Sumikama, H. Takeda, E. Takeshita, M. Takechi, S. Takeuchi, K. Tanaka, K. N. Tanaka, N. Tanaka, Y. Togano, Y. Utsuno, K. Yoneda, A. Yoshida, and K. Yoshida, Phys. Rev. Lett. 103, 262501 (2009).

    Article  ADS  Google Scholar 

  51. Y. Urata, K. Hagino, and H. Sagawa, Phys. Rev. C 83, 041303 (2011).

    Article  ADS  Google Scholar 

  52. M. Takechi, T. Ohtsubo, M. Fukuda, D. Nishimura, T. Kuboki, T. Suzuki, T. Yamaguchi, A. Ozawa, T. Moriguchi, H. Ooishi, D. Nagae, H. Suzuki, S. Suzuki, T. Izumikawa, T. Sumikama, M. Ishihara, H. Geissel, N. Aoi, R. J. Chen, D. Q. Fang, N. Fukuda, I. Hachiuma, N. Inabe, Y. Ishibashi, Y. Ito, D. Kameda, T. Kubo, K. Kusaka, M. Lantz, Y. G. Ma, K. Matsuta, M. Mihara, Y. Miyashita, S. Momota, K. Namihira, M. Nagashima, Y. Ohkuma, T. Ohnishi, M. Ohtake, K. Ogawa, H. Sakurai, Y. Shimbara, T. Suda, H. Takeda, S. Takeuchi, K. Tanaka, R. Watanabe, M. Winkler, Y. Yanagisawa, Y. Yasuda, K. Yoshinaga, A. Yoshida, and K. Yoshida, Phys. Lett. B 707, 357 (2012).

    Article  ADS  Google Scholar 

  53. K. Minomo, T. Sumi, M. Kimura, K. Ogata, Y. R. Shimizu, and M. Yahiro, Phys. Rev. Lett. 108, 052503 (2012), arXiv: 1110.3867.

    Article  ADS  Google Scholar 

  54. T. Sumi, K. Minomo, S. Tagami, M. Kimura, T. Matsumoto, K. Ogata, Y. R. Shimizu, and M. Yahiro, Phys. Rev. C 85, 064613 (2012), arXiv: 1201.2497.

    Article  ADS  Google Scholar 

  55. T. Nakamura, N. Kobayashi, Y. Kondo, Y. Satou, J. A. Tostevin, Y. Utsuno, N. Aoi, H. Baba, N. Fukuda, J. Gibelin, N. Inabe, M. Ishihara, D. Kameda, T. Kubo, T. Motobayashi, T. Ohnishi, N. A. Orr, H. Otsu, T. Otsuka, H. Sakurai, T. Sumikama, H. Takeda, E. Takeshita, M. Takechi, S. Takeuchi, Y. Togano, and K. Yoneda, Phys. Rev. Lett. 112, 142501 (2014).

    Article  ADS  Google Scholar 

  56. S. S. Zhang, M. S. Smith, Z. S. Kang, and J. Zhao, Phys. Lett. B 730, 30 (2014).

    Article  ADS  Google Scholar 

  57. H. Sagawa, X. R. Zhou, X. Z. Zhang, and T. Suzuki, Phys. Rev. C 70, 054316 (2004).

    Article  ADS  Google Scholar 

  58. A. Li, E. Hiyama, X. R. Zhou, and H. Sagawa, Phys. Rev. C 87, 014333 (2013), arXiv: 1301.2406.

    Article  ADS  Google Scholar 

  59. R. R. Rodríguez-Guzmáin, J. L. Egido, and L. M. Robledo, Eur. Phys. J. A 17, 37 (2003), arXiv: nucl-th/0302008.

    Article  ADS  Google Scholar 

  60. B. V. Pritychenko, T. Glasmacher, P. D. Cottle, M. Fauerbach, R. W. Ibbotson, K. W. Kemper, V. Maddalena, A. Navin, R. Ronningen, A. Sakharuk, H. Scheit, and V. G. Zelevinsky, Phys. Lett. B 461, 322 (1999).

    Article  ADS  Google Scholar 

  61. H. Sagawa, X. R. Zhou, T. Suzuki, and N. Yoshida, Phys. Rev. C 78, 041304 (2008), arXiv: 0810.2363.

    Article  ADS  Google Scholar 

  62. H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1 (2015), arXiv: 1411.6774.

    Article  MathSciNet  ADS  Google Scholar 

  63. T. T. Sun, W. L. Lu, and S. S. Zhang, Phys. Rev. C 96, 044312 (2017).

    Article  ADS  Google Scholar 

  64. T. T. Sun, W. L. Lu, L. Qian, and Y. X. Li, Phys. Rev. C 99, 034310 (2019), arXiv: 1902.07442.

    Article  ADS  Google Scholar 

  65. S. Shen, H. Liang, W. H. Long, J. Meng, and P. Ring, Prog. Particle Nucl. Phys. 109, 103713 (2019), arXiv: 1904.04977.

    Article  Google Scholar 

  66. J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys. 8, 55 (2013), arXiv: 1301.1808.

    Article  ADS  Google Scholar 

  67. P. Zhao, and Z. Li, Int. J. Mod. Phys. E 27, 1830007 (2018).

    Article  ADS  Google Scholar 

  68. P. Ring, Prog. Particle Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  69. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006), arXiv: nucl-th/0508020.

    Article  ADS  Google Scholar 

  70. Z. X. Ren, and P. W. Zhao, Phys. Rev. C 102, 021301(R) (2020), arXiv: 2004.11713.

    Article  ADS  Google Scholar 

  71. Z. X. Ren, S. Q. Zhang, and J. Meng, Phys. Rev. C 95, 024313 (2017), arXiv: 1612.09429.

    Article  ADS  Google Scholar 

  72. Z. X. Ren, S. Q. Zhang, P. W. Zhao, N. Itagaki, J. A. Maruhn, and J. Meng, Sci. China-Phys. Mech. Astron. 62, 112062 (2019).

    Article  ADS  Google Scholar 

  73. G. L. Long, Sci. China-Phys. Mech. Astron. 62, 112061 (2019).

    Article  ADS  Google Scholar 

  74. P. Ring, Sci. China-Phys. Mech. Astron. 62, 112063 (2019).

    Article  ADS  Google Scholar 

  75. Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. 198, 132 (1990).

    Article  ADS  Google Scholar 

  76. P. Ring, Y. K. Gambhir, and G. A. Lalazissis, Comput. Phys. Commun. 105, 77 (1997).

    Article  ADS  Google Scholar 

  77. S. G. Zhou, Phys. Scr. 91, 063008 (2016), arXiv: 1605.00956.

    Article  ADS  Google Scholar 

  78. B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85, 011301 (2012), arXiv: 1110.6769.

    Article  ADS  Google Scholar 

  79. B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 89, 014323 (2014), arXiv: 1304.2513.

    Article  ADS  Google Scholar 

  80. J. Zhao, B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 95, 014320 (2017), arXiv: 1606.08994.

    Article  ADS  Google Scholar 

  81. B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, J. Phys.-Conf. Ser. 492, 012014 (2014), arXiv: 1304.6830.

    Article  Google Scholar 

  82. B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Scr. 89, 054028 (2014), arXiv: 1312.6830.

    Article  ADS  Google Scholar 

  83. B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, EPJ Web Conf. 38, 05003 (2012), arXiv: 1303.0621.

    Article  Google Scholar 

  84. J. Zhao, B. N. Lu, D. Vretenar, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 91, 014321 (2015), arXiv: 1404.5466.

    Article  ADS  Google Scholar 

  85. J. Zhao, B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 86, 057304 (2012), arXiv: 1209.6567.

    Article  ADS  Google Scholar 

  86. J. Zhao, B. N. Lu, T. Nikšić, D. Vretenar, and S. G. Zhou, Phys. Rev. C 93, 044315 (2016), arXiv: 1603.00992.

    Article  ADS  Google Scholar 

  87. X. Meng, B. N. Lu, and S. G. Zhou, Sci. China-Phys. Mech. Astron. 63, 212011 (2020), arXiv: 1910.10552.

    Article  ADS  Google Scholar 

  88. Y. T. Rong, P. Zhao, and S. G. Zhou, Phys. Lett. B 807, 135533 (2020), arXiv: 2006.00797.

    Article  Google Scholar 

  89. Y. T. Rong, and S. G. Zhou, arXiv: 2103.10706.

  90. B. D. Serot, and J. D. Walecka, in Advances in Nuclear Physics vol. 16, edited by J. W. Negele, and E. Vogt (Springer, New York, 1986), p. 1.

  91. P. G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).

    Article  ADS  Google Scholar 

  92. D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  93. B. K. Jennings, Phys. Lett. B 246, 325 (1990).

    Article  ADS  Google Scholar 

  94. P. Ring, and P. Schuck, The Nuclear Many-body Problem (Springer, Berlin, 1980).

    Book  Google Scholar 

  95. W. Long, J. Meng, N. V. Giai, and S. G. Zhou, Phys. Rev. C 69, 034319 (2004), arXiv: nucl-th/0311031.

    Article  ADS  Google Scholar 

  96. X. S. Wang, H. Y. Sang, J. H. Wang, and H. F. Lu, Commun. Theor. Phys. 60, 479 (2013).

    Article  ADS  Google Scholar 

  97. M. Bender, K. Rutz, P. G. Reinhard, and J. A. Maruhn, EPJ A 7, 467 (2000), arXiv: nucl-th/9910025.

    Article  ADS  Google Scholar 

  98. Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009), arXiv: 0908.1844.

    Article  ADS  Google Scholar 

  99. Y. Tian, Z. Ma, and P. Ring, Phys. Rev. C 80, 024313 (2009), arXiv: 0908.1848.

    Article  ADS  Google Scholar 

  100. T. Nikšić, P. Ring, D. Vretenar, Y. Tian, and Z. Ma, Phys. Rev. C 81, 054318 (2010), arXiv: 0912.1331.

    Article  ADS  Google Scholar 

  101. D. S. Ahn, N. Fukuda, H. Geissel, N. Inabe, N. Iwasa, T. Kubo, K. Kusaka, D. J. Morrissey, D. Murai, T. Nakamura, M. Ohtake, H. Otsu, H. Sato, B. M. Sherrill, Y. Shimizu, H. Suzuki, H. Takeda, O. B. Tarasov, H. Ueno, Y. Yanagisawa, and K. Yoshida, Phys. Rev. Lett. 123, 212501 (2019).

    Article  ADS  Google Scholar 

  102. P. Marević, J. P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C 97, 024334 (2018), arXiv: 1802.02873.

    Article  ADS  Google Scholar 

  103. G. A. Lalazissis, D. Vretenar, and P. Ring, Eur. Phys. J. A 22, 37 (2004).

    Article  ADS  Google Scholar 

  104. P. Moller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Atomic Data Nucl. Data Tables 59, 185 (1995), arXiv: nucl-th/9308022.

    Article  ADS  Google Scholar 

  105. K. Tanida, H. Tamura, D. Abe, H. Akikawa, K. Araki, H. Bhang, T. Endo, Y. Fujii, T. Fukuda, O. Hashimoto, K. Imai, H. Hotchi, Y. Kakiguchi, J. H. Kim, Y. D. Kim, T. Miyoshi, T. Murakami, T. Nagae, H. Noumi, H. Outa, K. Ozawa, T. Saito, J. Sasao, Y. Sato, S. Satoh, R. I. Sawafta, M. Sekimoto, T. Takahashi, L. Tang, H. H. Xia, S. H. Zhou, and L. H. Zhu, Phys. Rev. Lett. 86, 1982 (2001).

    Article  ADS  Google Scholar 

  106. S. G. Zhou, J. Meng, P. Ring, and E. G. Zhao, Phys. Rev. C 82, 011301(R) (2010), arXiv: 0909.1600.

    Article  ADS  Google Scholar 

  107. L. Li, J. Meng, P. Ring, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85, 024312 (2012), arXiv: 1202.0070.

    Article  ADS  Google Scholar 

  108. H. Mei, K. Hagino, and J. M. Yao, Phys. Rev. C 93, 011301 (2016), arXiv: 1511.02957.

    Article  ADS  Google Scholar 

  109. H. J. Xia, X. Y. Wu, H. Mei, and J. M. Yao, Sci. China-Phys. Mech. Astron. 62, 042011 (2019), arXiv: 1811.01486.

    Article  Google Scholar 

  110. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 90, 064302 (2014), arXiv: 1406.4604.

    Article  ADS  Google Scholar 

  111. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 91, 064305 (2015), arXiv: 1504.04924.

    Article  ADS  Google Scholar 

  112. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 93, 044307 (2016), arXiv: 1602.01588.

    Article  ADS  Google Scholar 

  113. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 96, 014308 (2017), arXiv: 1704.02258.

    Article  ADS  Google Scholar 

  114. J.-M. Yao, H. Mei, K. Hagino, and T. Motoba, AIP Conf. Proc. 2130, 020008 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Ting Sun.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. U2032141), the Natural Science Foundation of Henan Province (Grant Nos. 202300410479, and 202300410480), the Foundation of Fundamental Research for Young Teachers of Zhengzhou University (Grant No. JC202041041), and the Physics Research and Development Program of Zhengzhou University (Grant No. 32410217). The theoretical calculation was supported by the nuclear data storage system in Zhengzhou University. The authors thank Prof. Shan-Gui Zhou for providing the MDC-RMF code and valuable suggestions. Chen Chen expresses thanks to Dr. Shi-Sheng Zhang and Dr. Wei Zhang for the fruitful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Sun, QK., Li, YX. et al. Possible shape coexistence in Ne isotopes and the impurity effect of Λ hyperon. Sci. China Phys. Mech. Astron. 64, 282011 (2021). https://doi.org/10.1007/s11433-021-1721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1721-1

Keywords

Navigation