Skip to main content
Log in

Multi-resolution technique integrated with smoothed particle element method (SPEM) for modeling fluid-structure interaction problems with free surfaces

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Free-surface flows, especially those associated with fluid-structure interactions (FSIs), pose challenging problems in numerical simulations. The authors of this work recently developed a smoothed particle element method (SPEM) to simulate FSIs. In this method, both the fluid and solid regions are initially modeled using a smoothed finite element method (S-FEM) in a Lagrangian frame, whereas the fluid regions undergoing large deformations are adaptively converted into particles and modeled with an improved smoothed particle hydrodynamics (SPH) method. This approach greatly improves computational accuracy and efficiency because of the advantages of the S-FEM in efficiently treating solid/fluid regions showing small deformations and the SPH method in effectively modeling moving interfaces. In this work, we further enhance the efficiency of the SPEM while effectively capturing local fluid information by introducing a multi-resolution technique to the SPEM and developing an effective approach to treat multi-resolution element-particle interfaces. Various numerical examples demonstrate that the multiresolution SPEM can significantly reduce the computational cost relative to the original version with a constant resolution. Moreover, the novel approach is effective in modeling various incompressible flow problems involving FSIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. L. Zhang, T. Long, J. Z. Chang, and M. B. Liu, Comput. Methods Appl. Mech. Eng. 356, 261 (2019).

    Article  ADS  Google Scholar 

  2. S. R. Idelsohn, E. Oñate, and F. D. Pin, Int. J. Numer. Meth. Engng. 61, 964 (2004).

    Article  Google Scholar 

  3. S. Meduri, M. Cremonesi, U. Perego, O. Bettinotti, A. Kurkchubasche, and V. Oancea, Int. J. Numer. Meth. Engng 113, 43 (2017).

    Article  Google Scholar 

  4. M. L. Cerquaglia, D. Thomas, R. Boman, V. Terrapon, and J. P. Ponthot, Comput. Methods Appl. Mech. Eng. 348, 409 (2019).

    Article  ADS  Google Scholar 

  5. A. Franci, and M. Cremonesi, Comp. Part. Mech. 4, 331 (2017).

    Article  Google Scholar 

  6. J. R. Cho, and H. W. Lee, Comput. Methods Appl. Mech. Eng. 193, 2581 (2004).

    Article  ADS  Google Scholar 

  7. J. Kim, D. Kim, and H. Choi, J. Comput. Phys. 171, 132 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  8. E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, J. Comput. Phys. 161, 35 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. W. Hirt, and B. D. Nichols, J. Comput. Phys. 39, 201 (1981).

    Article  ADS  Google Scholar 

  10. D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, J. Comput. Phys. 155, 410 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  11. P. P. Wang, Z. F. Meng, A. M. Zhang, F. R. Ming, and P. N. Sun, Comput. Methods Appl. Mech. Eng. 357, 112580 (2019).

    Article  ADS  Google Scholar 

  12. X. Zheng, R. Chen, M. Luo, E. Kazemi, and X. Liu, J. Mt. Sci. 16, 1913 (2019).

    Article  Google Scholar 

  13. C. Tsurudome, D. Liang, Y. Shimizu, A. Khayyer, and H. Gotoh, J. Hydrodyn. 32, 664 (2020).

    Article  ADS  Google Scholar 

  14. X. F. Yang, and M. B. Liu, Sci. China-Phys. Mech. Astron. 56, 315 (2013).

    Article  ADS  Google Scholar 

  15. M. Rezavand, C. Zhang, and X. Hu, J. Comput. Phys. 402, 109092 (2019), arXiv: 1903.09216.

    Article  Google Scholar 

  16. B. X. Zheng, L. Sun, and P. Yu, J. Comput. Phys. 431, 110119 (2021).

    Article  Google Scholar 

  17. X. Yang, and S. C. Kong, Comput. Phys. Commun. 239, 112 (2019), arXiv: 1808.02028.

    Article  MathSciNet  ADS  Google Scholar 

  18. K. Szewc, J. Pozorski, and A. Tanière, Int. J. Heat Mass Transfer 54, 4807 (2011).

    Article  Google Scholar 

  19. F. Garoosi, and A. Shakibaeinia, Int. J. Heat Mass Transfer 150, 119377 (2020).

    Article  Google Scholar 

  20. P. Yang, C. Huang, Z. Zhang, T. Long, and M. Liu, Int. J. Heat Mass Transfer 166, 120758 (2021).

    Article  Google Scholar 

  21. Z. L. Zhang, and M. B. Liu, J. Manuf. Proc. 41, 208 (2019).

    Article  Google Scholar 

  22. M. B. Liu, Z. L. Zhang, and D. L. Feng, Comput. Mech. 60, 513 (2017).

    Article  MathSciNet  Google Scholar 

  23. M. B. Liu, and G. R. Liu, Arch. Comput. Methods Eng. 17, 25 (2010).

    Article  MathSciNet  Google Scholar 

  24. J. J. Monaghan, Annu. Rev. Fluid Mech. 44, 323 (2012).

    Article  ADS  Google Scholar 

  25. R. Vacondio, C. Altomare, M. De Leffe, X. Hu, D. Le Touzé, S. Lind, J. Marongiu, S. Marrone, B. D. Rogers, and A. Souto-Iglesias, Comput. Part. Mech. 21, https://doi.org/10.1007/s40571-40020-00354-40571.

  26. G. Fourey, G. Oger, D. Touzé, and B. Alessandrini, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2010), p. 012041.

    Google Scholar 

  27. D. Hu, T. Long, Y. Xiao, X. Han, and Y. Gu, Comput. Methods Appl. Mech. Eng. 276, 266 (2014).

    Article  ADS  Google Scholar 

  28. C. Hermange, G. Oger, Y. Le Chenadec, and D. Le Touzé, Comput. Methods Appl. Mech. Eng. 355, 558 (2019).

    Article  ADS  Google Scholar 

  29. Z. L. Zhang, M. S. U. Khalid, T. Long, J. Z. Chang, and M. B. Liu, J. Fluids Struct. 94, 102942 (2020).

    Article  ADS  Google Scholar 

  30. S. Marrone, A. Di Mascio, and D. Le Touzé, J. Comput. Phys. 310, 161 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  31. L. Chiron, S. Marrone, A. Di Mascio, and D. Le Touzé, J. Comput. Phys. 364, 111 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Huang, T. Long, and M. B. Liu, Int. J. Numer. Meth. Fluids 90, 564 (2019).

    Article  Google Scholar 

  33. M. J. Berger, and P. Colella, J. Comput. Phys. 82, 64 (1989).

    Article  ADS  Google Scholar 

  34. M. Vanella, P. Rabenold, and E. Balaras, J. Comput. Phys. 229, 6427 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Vacondio, B. D. Rogers, P. K. Stansby, P. Mignosa, and J. Feldman, Comput. Methods Appl. Mech. Eng. 256, 132 (2013).

    Article  ADS  Google Scholar 

  36. D. A. Barcarolo, D. Le Touzé, G. Oger, and F. de Vuyst, J. Comput. Phys. 273, 640 (2014).

    Article  ADS  Google Scholar 

  37. R. Vacondio, B. D. Rogers, and P. K. Stansby, Int. J. Numer. Meth. Fluids 69, 1377 (2012).

    Article  Google Scholar 

  38. L. Chiron, G. Oger, M. de Leffe, and D. Le Touzé, J. Comput. Phys. 354, 552 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  39. P. N. Sun, D. Le Touzé, and A. M. Zhang, Eng. Anal. Bound. Elem. 104, 240 (2019).

    Article  MathSciNet  Google Scholar 

  40. J. Feldman, and J. Bonet, Int. J. Numer. Meth. Eng. 72, 295 (2007).

    Article  Google Scholar 

  41. Y. R. López, D. Roose, and C. Recarey Morfa, Comput. Mech. 51, 731 (2013).

    Article  MathSciNet  Google Scholar 

  42. R. Vacondio, B. D. Rogers, P. K. Stansby, and P. Mignosa, Adv. Water Resour. 58, 10 (2013).

    Article  ADS  Google Scholar 

  43. G. R. Liu, K. Y. Dai, and T. T. Nguyen, Comput. Mech. 39, 859 (2007).

    Article  Google Scholar 

  44. S. Marrone, A. Colagrossi, A. Di Mascio, and D. Le Touzé, J. Fluids Struct. 54, 802 (2015).

    Article  ADS  Google Scholar 

  45. P. N. Sun, M. Luo, D. Le Touzé, and A. M. Zhang, Phys. Fluids 31, 117108 (2019).

    Article  ADS  Google Scholar 

  46. S. Koshizuka, and Y. Oka, Nucl. Sci. Eng. 123, 421 (1996).

    Article  ADS  Google Scholar 

  47. S. Koshizuka, A. Nobe, and Y. Oka, Int. J. Numer. Meth. Fluids 26, 751 (1998).

    Article  Google Scholar 

  48. S. Shao, and E. Y. M. Lo, Adv. Water Resour. 26, 787 (2003).

    Article  ADS  Google Scholar 

  49. A. Khayyer, H. Gotoh, Y. Shimizu, K. Gotoh, H. Falahaty, and S. Shao, Coast. Eng. 140, 1 (2018).

    Article  Google Scholar 

  50. D. Wang, and P. L. F. Liu, Coast. Eng. 157, 103657 (2020).

    Article  ADS  Google Scholar 

  51. M. B. Liu, W. P. Xie, and G. R. Liu, Appl. Math. Model. 29, 1252 (2005).

    Article  Google Scholar 

  52. F. He, H. Zhang, C. Huang, and M. Liu, Coast. Eng. 156, 103617 (2019).

    Article  Google Scholar 

  53. D. Chen, W. Huang, and S. W. Sloan, Comput. Methods Appl. Mech. Eng. 343, 490 (2019).

    Article  ADS  Google Scholar 

  54. R. Xu, P. Stansby, and D. Laurence, J. Comput. Phys. 228, 6703 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  55. S. J. Lind, R. Xu, P. K. Stansby, and B. D. Rogers, J. Comput. Phys. 231, 1499 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  56. Y. Xiao, X. Han, and D. A. Hu, Comput. Mater. Con. 584, 1 (2011).

    Google Scholar 

  57. T. Long, D. Hu, D. Wan, C. Zhuang, and G. Yang, J. Comput. Phys. 350, 166 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  58. X. Cui, G. R. Liu, G. Y. Li, G. Zhang, and G. Zheng, Comput. Mech. 45, 141 (2010).

    Article  MathSciNet  Google Scholar 

  59. W. Zeng, and G. R. Liu, Arch. Comput. Methods Eng. 25, 397 (2018).

    Article  MathSciNet  Google Scholar 

  60. Y. P. Zhao, Arch. Appl. Mech. 68, 524 (1998).

    Article  ADS  Google Scholar 

  61. M. Liu, and Z. Zhang, Sci. China-Phys. Mech. Astron. 62, 984701 (2019).

    Article  ADS  Google Scholar 

  62. G. Oger, M. Doring, B. Alessandrini, and P. Ferrant, J. Comput. Phys. 213, 803 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  63. R. Zhao, O. Faltinsen, and J. Aarsnes, in Proceedings of the 21st Symposium on Naval Hydrodynamics (Trondheim, 1997).

  64. M. Greenhow, and S. Moyo, Philos. Trans. R. Soc. London. Ser. AMath. Phys. Eng. Sci. 355, 551 (1997).

    Article  ADS  Google Scholar 

  65. P. Lin, Comput. Fluids 36, 549 (2007).

    Article  Google Scholar 

  66. P. A. Tyvand, and T. Miloh, J. Fluid Mech. 286, 67 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  67. S. R. Idelsohn, J. Marti, A. Limache, and E. Oñate, Comput. Methods Appl. Mech. Eng. 197, 1762 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moubin Liu.

Additional information

This work was supported by the National Numerical Wind Tunnel Project (Grant No. NNW2019ZT2-B02), the National Natural Science Foundation of China (Grant Nos. 12032002, 51779003, and 11902005) and the Sino-German Mobility Programme (Grant No. M-0210). The authors appreciate the help from Dr. Muhammad Saif Ullah Khalid for smoothing the paper and giving constructive suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, T., Zhang, Z. & Liu, M. Multi-resolution technique integrated with smoothed particle element method (SPEM) for modeling fluid-structure interaction problems with free surfaces. Sci. China Phys. Mech. Astron. 64, 284711 (2021). https://doi.org/10.1007/s11433-021-1694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1694-8

Keywords

Navigation