Skip to main content

Advertisement

Log in

Nematode fauna associated with freshwater microbialites in Bacalar Lake, Quintana Roo, Mexico

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Bacalar Lake is characterized by a high saturation of calcium, bicarbonate, sulfate and silicate in its water and these conditions harbor a microbialite community. To explore the nematode fauna, associated with microbialites, 11 sites along the lake were selected. The collected microbialites were carefully dissolved and nematodes extracted manually. Nematodes were represented by 2 classes, 10 orders, 17 families, and 22 genera. Dorylaimidae and Xyalidae were the richest in genera (3 each), while the family Selachinematidae was represented by Choanolaimus, which is first reported in epicontinental systems. Dichromadora (48), Epitobrilus (31), Dorylaimus (30), Ischiodorylaimus (24), Belondira (13), Aphanolaimus (11) and Monhystera (10) were the most abundant genera. All Nematode's freshwater feeding types were present, but deposit feeders (DF) were observed with 35%. We concluded that nematodes are an important component of the metazoan fauna in microbialites from Bacalar Lake, with a higher diversity than reported in other lakes and marine environments. Nematodes can take advantage of the micro-spaced texture of microbialites and function as bioturbators, as well as escape predation, taking advantage of available food, which is reflected in the structure of nematode feeding types. More research on the interaction of microbialites-nematodes is necessary to understand their role in this poorly known environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abebe E, Andrássy I, Traunspurger W (2006) Freshwater nematodes: Ecology and Taxonomy. CABI International, Wallingford

    Book  Google Scholar 

  • Allwood A, Walter M, Kamber B, Marshall CP, Burch IW (2006) Stromatolite reef from the early archaean era of Australia. Nature 441:714–718

    Article  CAS  PubMed  Google Scholar 

  • Awramik SM (1971) Precambrian columnar stromatolite diversity - reflection of metazoan appearance. Science 174:825–827

    Article  CAS  PubMed  Google Scholar 

  • Beltrán Y, Centeno CM, García-Oliva F, Legendre P, Falcón LI (2012) N2 fixation rates and associated diversity (nifH) of microbialite and mat-forming consortia from different aquatic environments in Mexico. Aquat Microb Ecol 67(1):15–24

    Article  Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4):401–411

    Article  CAS  Google Scholar 

  • Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, Hollander D (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas. Mexico Environ Microbiol 11(1):16–34

    Article  CAS  PubMed  Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Castro-Contreras C, Murray KG, Pecoits E, Aubet NR, Petrash D, Castro CS, Gregory D, Planavsky N, Konhauser KO (2014) Textural and geochemical features of freshwater microbialites from Laguna Bacalar, Quintana Roo. Mexico Palaios 29(5):92–209

    Google Scholar 

  • Centeno CM, Legendre P, Beltran Y, Alcantara-Hernandez RJ, Lidstro UE, Ashby MN, Falcon LI (2012) Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiol Ecol 82:724–735

    Article  CAS  PubMed  Google Scholar 

  • Chagas AA, Webb GE, Burne RV, Southam G (2016) Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth Sci Rev 162:338–363

    Article  CAS  Google Scholar 

  • Comisión Nacional del Agua (2015) Actualización de la disponibilidad media anual de agua en el acuífero Cerros y Valles (2301), Estado de Quintana Roo. (CONAGUA, Periodico Oficial de la Federación: Ciudad de México, México

  • Couradeau E, Benzerara K, Moreira D, Gérard E (2011) Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico). PloS One 6(12):e28767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Almeida RE, García ME, Pérez MF, Farías ME, Dib JR (2019) Novel nematode species in living stromatolites in the Andean Puna. Invertebr Biol 16(3):211–218

    Article  Google Scholar 

  • De Jesús-Navarrete A (1993) Nematodos de la Laguna de Buenavista, Quintana Roo. México Rev Biol Trop 41(3):649–652

    Google Scholar 

  • Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167

    Article  CAS  PubMed  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13(9):429–438

    Article  CAS  PubMed  Google Scholar 

  • Edgcomb VP, Bernhard JM, Summons RE, Orsi W, Beaudoin D, Visscher PT (2014) Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay) Australia. ISME J 8:418–429

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 5879:1034–1039

    Article  CAS  Google Scholar 

  • Farmer JD (1992) Grazing and bioturbation in modern microbial mats. In: Schoff JW, Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge, pp 295–329

    Google Scholar 

  • Feazel LM, Spear JR, Berger AB, Harris JK, Frank DN, Ley RE, Pace NR (2007) Eucaryotic diversity in a hypersaline microbial mat. Appl Environ Microbiol 74(1):329–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flemming H, Neu T, Wozniak D (2007) The EPS matrix: the ‘house of biofilm cells. J Bacteriol 189:7945–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamboa-Pérez HC, Schmitter-Soto JJ (1999) Distribution of ciclid fishes in the littoral of lake Bacalar, Yucatan Peninsula. Environ Biol Fishes 54:35–43

    Article  Google Scholar 

  • García-Pichel F, Al-Horani FA, Farmer JD, Ludwig R, Wade BD (2004) Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. Geobiology 2:49–57

    Article  Google Scholar 

  • Gerdes G, Spira J, Dimentman C (1985) The fauna of the Gavish Sabkha and the Solar Lake a comparative study. In: Friedman G, Krummbein W (eds) Hypersaline ecosystems. Springer, Berlin , pp 322–345

    Chapter  Google Scholar 

  • Ginestet C (2011) ggplot2: elegant graphics for data analysis. J R Stat Soc Ser 174(1):245–246

    Article  Google Scholar 

  • Gingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E, Petrash D, Konhauser KO (2011) Possible evolution of mobile animals in association with microbial mats. Nat Geosci 4:372–375

    Article  CAS  Google Scholar 

  • Gischler E, Gibson MA, Oschmann W (2008) Giant Holocene freshwater microbialites, Laguna Bacalar, Quintana Roo, Mexico. Sedimentology 55:1293–1309

    Article  CAS  Google Scholar 

  • Gischler E, Golubic S, Gibson M, Oschamann W, Hudson JH (2011) Microbial mats and microbialites in the freshwater Laguna Bacalar, Yucatan Peninsula, Mexico. In: Reitner MH, Trauth K, Yuen D (eds) Advances in Stromatolite Geobiology. Springer, Berlin, pp 187–205

    Chapter  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol 23:399–489

    Google Scholar 

  • Höckelmann C, Moens T, Juttner F (2004) Odor compounds from cyanobacterial biofilms acting as attractants and repellents for free-living nematodes. Limnol Oceanogr 49:1809–1819

    Article  Google Scholar 

  • Höss S, Claus E, Von der Ohe PC, Brinke M, Güde H, Heininger P, Traunspurger W (2011) Nematode species at risk—a metric to assess pollution in soft sediments of freshwaters. Environ Int 37(5):940–949

    Article  PubMed  CAS  Google Scholar 

  • Husson F, Josse J, Le S, Mazet J (2014) FactoMineR: multivariate exploratory data analysis and data mining with R [Internet]. Available via: http://CRAN.R-project.org/package=FactoMineR.  R package version 1.26, Cited 20 Nov 2020

  • Konishi Y, Prince J, Knott B (2001) The fauna of thrombolitic microbialites, Lake Clifton, western Australia. Hydrobiologia 457:39–47

    Article  Google Scholar 

  • Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16(8):951–963

    Article  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227

    Article  Google Scholar 

  • Montagna PA (1995) Rates of metazoan meiofaunal microbivory: A review. Vie Milieu 45:1–9

    Google Scholar 

  • Montes-Ortiz L, Elías-Gutiérrez M (2020) Water mite diversity (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae) from Karst Ecosystems in Southern of Mexico: a barcoding approach. Diversity 12(9):329

    Article  Google Scholar 

  • Myshrall KL, Mobberley JM, Green SJ, Visscher PT (2010) Biogeochemical cycling and microbial diversity in the thrombolytic microbialites of Highborn Cay. Bahamas Geobiol 8:337–354

    Article  CAS  Google Scholar 

  • Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3700-million-year-old microbial structures. Nature 537(7621):535–538

    Article  CAS  PubMed  Google Scholar 

  • Pérez L, Bugja R, Lorenschat L, Brenner M, Curtis J, Hoetzmann P, Islebe G, Scharf B, Schwalb A (2011) Aquatic ecosystems of the Yucatán Peninsula (Mexico), Belize and Guatemala. Hydrobiologia 661:407–433

    Article  CAS  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. Available in  http://www.r-project.org/index.html, Cited 10 Oct 2020

  • Riding RE (2011) Microbialites, stromatolites and thrombolites. In: Reitner J, Thiel V (eds) Encyclopedia of Geobiology. Springer, Heidelberg, pp 635–654

    Chapter  Google Scholar 

  • Rishworth GM, Perissinotto R, Bird MS (2016) Coexisting living stromatolites and infaunal metazoans. Oecologia 182(2):539–545

    Article  PubMed  Google Scholar 

  • Ristau K, Traunspurger W (2011) Relation between nematode communities and trophic state in southern Swedish lakes. Hydrobiologia 663(1):121–133

    Article  Google Scholar 

  • Schmitter-Soto JJ, Comin FA, Escobar BE, Herrera SJ, Alcocer J, Suarez ME, Elıas GM, Dıaz AV, Marin LE, Steinich B (2002) Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467:215–228

    Article  CAS  Google Scholar 

  • Smith DG (2000) Pennak’s freshwater invertebrates of the United States. Wiley Inc., New York

    Google Scholar 

  • Tarhan LG, Planavsky NJ, Laumer CE, Stolz JF, Reid RP (2013) Microbial mat controls on infaunal abundance and diversity in modern marine microbialites. Geobiology 11(5):485–497

    Article  CAS  PubMed  Google Scholar 

  • Tobón-Velázquez NI, Vieyra MR, Paytan A, Broach KH, Terrones LMH (2018) Hydrochemistry and carbonate sediment characterization of Bacalar Lagoon, Mexican Caribbean. Mar Freshwater Res 70(3):382–394

    Article  CAS  Google Scholar 

  • Traunspurger W (1997) Bathymetric, seasonal and vertical distribution of feeding-types of nematodes in an oligotrophic lake. Vie Milieu 47:1–7

    Google Scholar 

  • Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100

    Article  Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise of the metazoa and the decline of stromatolites. Precambrian Res 29(1–3):149–174

    Article  Google Scholar 

  • White RA III, Visscher PT, Burns BP (2020) Between a rock and a soft place: the role of viruses in lithification of modern microbial mats. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.06.004

    Article  PubMed  Google Scholar 

  • Yanez-Montalvo A, Gómez-Acata S, Águila B, Hernández-Arana H, Falcón LI (2020) The microbiome of modern microbialites in Bacalar Lagoon. Mexico. PLoS One 15(3):e0230071

    Article  CAS  PubMed  Google Scholar 

  • Zeppilli D, Sarrazin J, Leduc D, Arbizu PM, Fontaneto D, Fontanier C, Gooday AJ, Kristensen RM, Ivanenko VN, Sørensen MV, Vanreusel A, Thébault J, Mea M, Allio N, Andro T, Arvigo A, Castrec J, Danielo M, Foulon V, Fumeron R, Hermabessiere L, Hulot V, James T, Langonne-Augen R, Le Bot T, Long M, Mahabror D, Morel Q, Pantalos M, Pouplard E, Raimondeau L, Rio-Cabello A, Seite S, Traisnel G, Urvoy K, Van Der Stegen T, Weyand M, Fernandes D (2015) Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers, 45:505–535

    Article  Google Scholar 

  • Zullini A (2010) Identification manual for freshwater nematode genera. Universidades di Milano-Bicocca p 211

Download references

Acknowledgements

Technical assistance is acknowledged to Holger Weissenberger (ECOSUR, Chetumal). Authors are grateful for funding from UNAM PAPIIT No. IN207220 (LIF). AYM received a graduate studies scholarship from CONACyT, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto de Jesús-Navarrete.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 33 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesús-Navarrete, A., Yanez-Montalvo, A., Falcón, L.I. et al. Nematode fauna associated with freshwater microbialites in Bacalar Lake, Quintana Roo, Mexico. Limnology 22, 347–355 (2021). https://doi.org/10.1007/s10201-021-00662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-021-00662-2

Keywords

Navigation