Skip to main content
Log in

Pole Placement Optimization for SISO Control System

  • ROBUST, ADAPTIVE AND NETWORK CONTROL
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the control design problem for a linear time-invariant plant. A linear controller is found that minimizes some system performance index, for example, the ratio of the plant output to the external disturbance, as the \(H_{\infty }\)-norm of the corresponding function, provided that the requirements for the system performance are satisfied, namely, those on the stability margin radius, the ratio of the control signal to the noise in measurements of the plant output, the damping ratio, and speed of response. The well-known control design methods from the Matlab Robust Control Toolbox package are considered for solving such a problem. A control design method is proposed that uses the roots of the characteristic polynomial of the closed-loop system as the variables to be varied in the standard optimization procedure and the standard pole placement procedure for obtaining the values of the controller coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Polyak, B.T., Khlebnikov, M.V., and Rapoport, L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya (Mathematical Automated Control Theory), Moscow: LENAND, 2019.

    Google Scholar 

  2. Åström, K.J. and Murray, R.M., Feedback Systems: an Introduction for Scientists and Engineers, Princeton: Princeton Univ. Press, 2008.

    Book  Google Scholar 

  3. Skogestad, S. and Postlethwaite, I., Multivariable Feedback Control. Analysis and Design, New York: John Wiley and Sons, 2006.

    MATH  Google Scholar 

  4. Aleksandrov, A.G., Metody postroeniya sistem avtomaticheskogo regulirovaniya (Automated Control System Design Methods), Moscow: Fizmatlit, 2008.

    Google Scholar 

  5. Gahinet, P. and Apkarian, P., A linear matrix inequality approach to \(H_{\infty } \) control, Int. J. Robust Nonlinear Control, 1994, vol. 4, pp. 421–448.

    Article  MathSciNet  Google Scholar 

  6. Chilali, M. and Gahinet, P., \(H_{\infty } \) design with pole placement constraints: an LMI approach, IEEE Trans. Autom. Control, 1996, vol. 41, no. 3, pp. 358–367.

    Article  MathSciNet  Google Scholar 

  7. Apkarian, P. and Noll, D., Nonsmooth \(H_{\infty } \) synthesis, IEEE Trans. Autom. Control, 2006, vol. 51, no. 1, pp. 71–86.

    Article  MathSciNet  Google Scholar 

  8. Gahinet, P. and Apkarian, P., Decentralized and fixed-structure \(H_{\infty } \) control in MATLAB, Proc. IEEE Conf. Decis. Control (2011), pp. 8205 –8210.

  9. Apkarian, P., Gahinet, P., and Buhr, C., Multi-model, multi-objective tuning of fixed-structure controllers, Proc. Eur. Control Conf. (2014), pp. 856–861.

  10. Gryazina, E.N., Polyak, B.T., and Tremba, A.A, \(D \)-decomposition technique state-of-the-art, Autom. Remote Control, 2008, vol. 69, no. 12, pp. 1991–2026.

    Article  MathSciNet  Google Scholar 

  11. Shcherbakov, P.S., Fixed order controller design subject to engineering specifications, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1217–1229.

    Article  Google Scholar 

  12. Alexandrov, A.G. and Chestnov, V.N., Synthesis of multivariable systems of prescribed accuracy. II. Use of procedures of H-Infinity-optimization, Autom. Remote Control, 1998, vol. 59, no. 8, pp. 1153–1164.

    MATH  Google Scholar 

  13. Agafonov, P.A. and Chestnov, V.N., Controllers of a given radius of stability margin: their design by the \(H_{\infty }\)-approach with regard for external disturbances, Autom. Remote Control, 2004, vol. 65, no. 10, pp. 1611–1617.

    Article  MathSciNet  Google Scholar 

  14. Chestnov, V.N., Design of robust \(H_{\infty } \)-controllers of multivariable systems based on the given stability degree, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 557–563.

    Article  MathSciNet  Google Scholar 

  15. Chestnov, V.N., Synthesis of multivariable systems according to engineering quality criteria based on \(H_{\infty }\) -optimization, Autom. Remote Control, 2019, vol. 80, no. 10, pp. 1861–1877.

    Article  MathSciNet  Google Scholar 

  16. Aleksandrov, A.G., Controller design in precision and speed. I. Minimal phase one-dimensional plants, Autom. Remote Control, 2015, vol. 76, no. 5, pp. 749–761.

    Article  MathSciNet  Google Scholar 

  17. Aleksandrov, A.G., Design of controllers by indices of precision and speed. II. Nonminimal-phase plants, Autom. Remote Control, 2017, vol. 78, no. 6, pp. 961–973.

    Article  MathSciNet  Google Scholar 

  18. Aleksandrov, A.G., Criteria of coarseness of time-varying automatic control systems, in Analiticheskie metody sinteza regulyatorov: Mezhvuz. nauchn. sb. (Analytic Control Design Methods: Interuniv. Sci. Trans.), Saratov: Sarat. Politekh. Inst., 1980, pp. 3–14.

    Google Scholar 

  19. Chestnov, V.N., Synthesis of controllers for multivariate systems with a given radius of stability margin by the H-infinity-optimization method, Autom. Remote Control, 1999, vol. 60, no. 7, pp. 986–993.

    MathSciNet  MATH  Google Scholar 

  20. Alexandrov, V.A., Chestnov, V.N., and Shatov, D.V., Stability margins for minimum-phase SISO plants: a case study, Proc. Eur. Control Conf. (2020), pp. 2068–2073.

  21. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of linear Systems Subject to External Disturbances: Linear Matrix Inequalities Technique), Moscow: LENAND, 2014.

    Google Scholar 

  22. Åström, K. and Wittenmark, B., Computer-Controlled Systems. Theory and Design, Upper Saddle River, NJ: Prentice Hall, 1984. Translated under the title: Sistemy upravleniya s EVM, Moscow: Mir, 1987.

    Google Scholar 

  23. Gaiduk, A.R., Teoriya i metody analiticheskogo sinteza sistem avtomaticheskogo upravleniya (polinomial’nyi podkhod) (Theory and Methods of Analytic Synthesis of Automatic Control Systems (Polynomial Approach)), Moscow: Fizmatlit, 2012.

    Google Scholar 

  24. Kim, D.P., Algebraicheskie metody sinteza sistem avtomaticheskogo upravleniya (Algebraic Methods of Automatic Control System Synthesis), Moscow: Fizmatlit, 2014.

    Google Scholar 

  25. Chestnov, V.N., Alexandrov, V.A., and Rezkov, I.G., Synthesis of discrete modal SISO controllers by engineering performance indices, Autom. Remote Control, 2020, vol. 81, no. 6, pp. 1107–1124.

    Article  MathSciNet  Google Scholar 

  26. Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., and Marti, R., Scatter search and local NLP solvers: a multistart framework for global optimization, INFORMS J. Comput., 2007, vol. 19, no. 3, pp. 328–340.

    Article  MathSciNet  Google Scholar 

  27. Wie, B. and Bernstein, D.S, A benchmark problem for robust control design, Proc. Am. Control Conf. (San Diego, CA, USA, 1990), pp. 961–962.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alexandrov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, V.A. Pole Placement Optimization for SISO Control System. Autom Remote Control 82, 1013–1029 (2021). https://doi.org/10.1134/S0005117921060047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921060047

Keywords

Navigation