Skip to main content
Log in

Anisotropy-Based Filtering for Linear Discrete Time-Varying Systems with Multiplicative Noises on a Finite Horizon

  • STOCHASTIC SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the anisotropy-based filtering problem for a linear discrete time-varying multiplicative noise system on a finite time horizon. A random disturbance with an inaccurately known distribution is fed to the system input. The uncertainty in the description of this distribution is characterized by a constraint on the anisotropic functional. The output of the original system is estimated using the selected filter of a certain type according to the principle of minimizing the performance indicator in the form of the anisotropic norm of the filtering error system. Based on the lemma on the boundedness of the anisotropic norm of the filtering error system, relations for the unknown filter matrices are derived. As special cases, we consider anisotropy-based filtering problems for a system with measurement dropouts as well as a similar problem for a system with a filter of a special type. A numerical example where the method is used to synthesize an anisotropy-based filter is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Anderson, B.D.O. and Moore, J.B., Optimal Filtering, Englewood Cliffs, NJ: Prentice Hall, 1979.

    MATH  Google Scholar 

  2. Hassibi, B., Sayed, A., and Kailath, T., Indefinite Quadratic Estimation and Control: a Unified Approach to \(\mathcal {H}_2 \) and \( \mathcal {H}_{\infty }\) Theories, Philadelphia: SIAM, 1999.

    Book  Google Scholar 

  3. Simon, D., Optimal State Estimation: Kalman, \( \mathcal {H}_{\infty }\), and Nonlinear Approaches, New York: Wiley, 2006.

    Book  Google Scholar 

  4. Vladimirov, I.G., Kurdjukov, A.P., and Semyonov, A.V., Anisotropy of signals and the entropy of linear stationary systems, Dokl. Math., 1995, vol. 51, pp. 388–390.

    Google Scholar 

  5. Vladimirov, I.G., Kurdjukov, A.P., and Semyonov, A.V., On computing the anisotropic norm of linear discrete-time-invariant systems, Proc. 13 IFAC World Congr. (1996), pp. 179–184.

  6. Vladimirov, I.G., Diamond, P., and Kloeden, P., Anisotropy-based robust performance analysis of linear discrete time varying systems, CADSMAP Research Report 01-01, Univ. Queensland, Australia, 2001.

  7. Vladimirov, I.G. and Diamond, P., Robust filtering in finite horizon linear discrete time varying systems by minimum anisotropic norm criterion, CADSMAP Res. Report 01–05, Univ. Queensland, Australia, 2001.

  8. Maximov, E.A., Kurdyukov, A.P., and Vladimirov, I.G., Anisotropic norm bounded real lemma for linear time-varying system, Prepr. 18th IFAC World Congr. (Milan, 2011), pp. 4701–4706.

  9. Timin, V.N. and Kurdyukov, A.P., Suboptimal anisotropy-based filtering in a finite horizon, Autom. Remote Control, 2016, vol. 77, no. 1, pp. 1–20.

    Article  MathSciNet  Google Scholar 

  10. Yaesh, I. and Stoica, A.-M., Linear time-varying anisotropic filtering and its application to nonlinear systems state estimation, Proc. Eur. Control Conf. (Strasbourg, June 24–27, 2014), pp. 975–980.

  11. Gershon, E., Shaked, U., and Yaesh, I., \(\mathcal {H}_{\infty } \)-control and filtering of discrete-time stochastic systems with multiplicative noise, Automatica, 2001, no. 37, pp. 409–417.

  12. Todorov, E. and Li, W., Optimal control methods suitable for biomechanical systems, Proc. 25th Annu. Int. Conf. IEEE Eng. Biol. Med. Soc. (Mexico, 2003), pp. 1758–1761.

  13. Todorov, E., Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system, Neural Comput., 2005, no. 17, pp. 1084–1108.

  14. Semyonov, A.V., Vladimirov, I.G., and Kurdyukov, A.P., Stochastic approach to H-infinity optimization, Proc. 33rd IEEE Conf. Decis. Control, 1994, vol. 3, pp. 2249–2250.

    Google Scholar 

  15. Pakshin, P.V., State estimation and control design for digital linear systems with multiplicative noises, Autom. Remote Control, 1978, vol. 39, no. 4, pp. 526–636.

    MathSciNet  MATH  Google Scholar 

  16. Dombrovskii, V.V. and Lyashenko, E.A., A linear quadratic control for discrete systems with random parameters and multiplicative noise and its application to investment portfolio optimization, Autom. Remote Control, 2003, vol. 64, no. 10, pp. 1558–1570.

    Article  MathSciNet  Google Scholar 

  17. Belov, I.R., Yurchenkov, A.V., and Kustov, A.Yu., Anisotropy-based bounded real lemma for multiplicative noise systems: the finite horizon case, 27th Mediterr. Conf. Control Autom. (2019).

  18. Freiling, G. and Ionescu, V., Monotonicity and convexity properties of matrix Riccati equations, IMA J. Math. Control Inf., 2001, vol. 18, no. 1, pp. 61–72.

    Article  MathSciNet  Google Scholar 

  19. Freiling, G. and Ionescu, V., Time-varying discrete Riccati equation: some monotonicity results, Linear Algebra Its Appl., 1999, no. 286, pp. 135–148.

  20. Zhang, F., The Schur Complement and Its Applications, Boston, MA: Springer, 2005.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-31-90060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Belov.

Additional information

Translated by V. Potapchouck

APPENDIX 1

Proof of Theorem 1. Let us reduce the expression (4.23) to the form of an inequality while considering the positive definiteness of the matrix \(\mathcal {S}(k) \),

$$ \begin {aligned} \Theta (k)&\succ 0: \Theta (k)\succ \mathcal {S}(k),\quad \Theta ^{-1}(k)\prec \mathcal {S}^{-1}(k),\\ \Theta ^{-1}(k) &= \Psi (k) \prec I_{m_w} - \left (\thinspace q \sum \limits _{i=0}^{M}\thinspace \mathcal {D}_{i}^{\top }(k)\thinspace \mathcal {D}_{i}(k) + \sum \limits _{i=0}^{M}\thinspace \mathcal {B}_{i}^{\top }(k)\thinspace \mathcal {R}(k + 1)\thinspace \mathcal {B}_{i}(k) \right ),\\ \Psi ^{-1}(k)&\succ \mathcal {S}(k). \end {aligned}$$
(A.1.1)

Applying (A.1.1) to system (4.21)–(4.25), we obtain a system of inequalities of the form

$$ \begin {aligned} \widehat {\mathcal {R}}(k) & \succ \mathcal {R}(k), \quad \widehat {\mathcal {R}}(N+1)=0,\nonumber \\ \widehat {\mathcal {R}}(k) &\succ \mathcal {A}_0^{\top }(k)\widehat {\mathcal {R}}(k + 1)\mathcal {A}_0^{}(k)+\sum \limits _{i=1}^{M}a_i\mathcal {A}_i^{\top }(k)\widehat {\mathcal {R}}(k + 1) \mathcal {A}_i(k) + q\sum \limits _{i=0}^{M}c_i\mathcal {C}_{i}^{\top }(k) \mathcal {C}_{i}(k)\\ &\quad {} + \left ( \mathcal {B}_{0}^{\top } \widehat {\mathcal {R}}(k + 1)\mathcal {A}_0 + q\mathcal {D}_{0}^{\top }\mathcal {C}_{0} \right )^{ \top } \Psi ^{-1}(k) \left ( \mathcal {B}_{0}^{\top }\widehat {\mathcal {R}}(k + 1)\mathcal {A}_0 + q\mathcal {D}_{0}^{\top }\mathcal {C}_{0} \right ) , \end {aligned} $$
(A.1.2)
$$ \Psi (k) \prec I_{m_w} - \left ( q\sum \limits _{i=0}^{M}\mathcal {D}_{i}^{\top }(k)\mathcal {D}_{i}(k) + \sum \limits _{i=0}^{M} \mathcal {B}_{i}^{\top }(k)\widehat {\mathcal {R}}(k + 1)\mathcal {B}_{i}(k) \right ) ,\qquad \qquad \qquad \enspace \thinspace \thinspace $$
(A.1.3)
$$ \sum \limits _{k=0}^{N}\ln \det \Psi (k) \geqslant 2a + m_w^{}(N+1)\ln (1-q\gamma ^2).$$
(A.1.4)
Note that inequality (A.1.4) contains the product \(q\gamma ^2 \) of two variables of the system. To solve the system of inequalities, it is necessary to eliminate this nonlinear component by means of a transformation of the very expression or a change of variables. Consequently, we introduce the new variables
$$ \begin {gathered} \eta = q^{-1},\quad \overline {\Psi } = \eta \Psi ,\\ \mathcal {P}(k) = \eta \widehat {\mathcal {R}}(k),\quad \mathcal {P}(N+1) = \eta \widehat {\mathcal {R}}(N+1). \end {gathered} $$
(A.1.5)

For conciseness of notation of the calculations with linear matrix inequalities to follow, introduce the notation

$$ \overline {\mathcal {A}}(k) = \left ( \begin {array}{{ccc}} \mathcal {A}_1^{\top } & \ldots & \mathcal {A}_{M_1}^{\top } \end {array}\right ), \quad \overline {\mathcal {B}}(k) = \left ( \begin {array}{{ccc}} \mathcal {B}_1^{\top } & \ldots &\mathcal {B}_{M_2}^{\top } \end {array}\right ), $$
(A.1.6)
$$ \overline {\mathcal {C}}(k) = \left ( \begin {array}{{ccc}} \mathcal {C}_1^{\top } & \ldots & \mathcal {C}_{M_3}^{\top } \end {array}\right ), \quad \overline {\mathcal {D}}(k) = \left ( \begin {array}{{ccc}} \mathcal {D}_1^{\top } & \ldots & \mathcal {D}_{M_4}^{\top } \end {array}\right ). $$
(A.1.7)

To bring inequalities (A.1.2) and (A.1.3) to the form of a system of linear matrix inequalities (LMI), we need the Schur complement lemma. The statement of this lemma can be found in [20].

Let us apply the Schur complement lemma to the system of Riccati inequalities (A.1.2)–(A.1.3) with allowance for the change of variables (A.1.5) and notation (A.1.6)–(A.1.7),

$$ \left (\begin {array}{{cccccc}} \mathcal {P}(k) & \ast & \ast & \ast & \ast & \ast \\ 0 & \eta I_{m_w} & \ast & \ast & \ast & \ast \\ \mathcal {A}_0(k) & \mathcal {B}_{0}(k) & \mathcal {P}^{-1}(k+1) & \ast & \ast & \ast \\ \overline {\mathcal {A}}^{\top }(k) & 0 & 0 & \ddots & \ast & \ast \\ \mathcal {C}_0(k) & \mathcal {D}_{0}(k) & 0 & 0 & \mathcal {P}^{-1}(k+1) & \ast \\ \overline {\mathcal {C}}^{\top }(k) & 0 & 0 & 0 & 0 & I \\ \end {array}\right )\succ 0,$$
(A.1.8)
$$ \left (\begin {array}{{cccc}} \mathcal {P}(N) & \ast & \ast & \ast \\ 0 & \eta I_{m_w^{}}^{} & \ast & \ast \\ \mathcal {C}_0(N) & \mathcal {D}_0(N) & I_{p_z}^{} & \ast \\ \overline {\mathcal {C}}(N) & 0 & 0 & I\\ \end {array} \right )\succ 0,$$
(A.1.9)
$$ \left (\begin {array}{{ccccc}} \eta I_{m_w^{}}^{}-\overline {\Psi }(k) & \ast & \ast & \ast & \ast \\ \mathcal {B}_0^{\top }(k) & \mathcal {P}^{-1}(k+1) & \ast & \ast & \ast \\ \vdots & 0 & \ddots & \ast & \ast \\ \mathcal {B}_{M_2}^{\top }(k) & 0 & 0 & \mathcal {P}^{-1}(k+1) & \ast \\ \overline {\mathcal {D}}^{\top }(k) & 0 & \ldots & 0 & I \end {array}\right )\succ 0,$$
(A.1.10)
$$ \left (\begin {array}{{cc}} \eta I_{m_w^{}}^{}-\overline {\Psi }(N) & \ast \\ \mathcal {D}(N) & I_{p_z} \end {array}\right )> 0, $$
(A.1.11)
$$ \prod \limits _{k=0}^{N}\det \overline {\Psi }(k) \geqslant e^{2a}(\eta -\gamma ^2)^{m_w(N+1)},$$
(A.1.12)
$$ \mathcal {P}(k) \succ 0,\quad k=N-1,\ldots ,0\nonumber .$$

To eliminate the inverse matrices from inequalities (A.1.8) and (A.1.10), we perform congruent transformations of the inequalities using block-diagonal matrices of the form

$$ \begin {gathered} \mathrm {blockdiag}\left (I_{2n_x},I_{m_w},\mathcal {P}(k+1),\ldots ,\mathcal {P}(k+1),I_{p_z(M_3+1)}\right )\\[.5em] \text {and}\\[.5em] \mathrm {blockdiag}\left (I_{2n_x},\mathcal {P}(k+1),\ldots ,\mathcal {P}(k+1),I_{p_z(M_4+1)}\right ). \end {gathered} $$

To simplify the notation of the transformed LMI, we introduce the notation

$$ \overline {\mathcal {A}}(k)\mathcal {P}(k+1) = \left ( \begin {array}{{ccc}} \mathcal {A}_1^{\top }\mathcal {P}(k+1) & \ldots & \mathcal {A}_{M_1}^{\top }\mathcal {P}(k+1) \end {array}\right ), $$
(A.1.13)
$$ \overline {\mathcal {B}}(k)\mathcal {P}(k+1) = \left ( \begin {array}{{ccc}} \mathcal {B}_1^{\top }\mathcal {P}(k+1) & \ldots & \mathcal {B}_{M_2}^{\top }\mathcal {P}(k+1) \end {array}\right ). $$
(A.1.14)

Applying notation (A.1.13)–(A.1.14) and necessary congruent transformations to inequalities (A.1.8)–(A.1.12), we obtain the desired linear matrix inequalities (4.26)–(4.30). \(\quad \blacksquare \)

APPENDIX 2

Proof of Theorem 2. Let us write the condition for the boundedness of the anisotropic norm for the filtering error system with allowance for the above calculations,

$$ \begin {gathered} \left [ \begin {array}{{ccccc}} \mathcal {P}(k) & 0 & \mathcal {A}_0^{\top }\mathcal {P}(k+1) & \overline {\mathcal {A}}(k)\mathcal {P}(k+1) & \overline {\mathcal {C}}(k)\\ * & \eta I & \mathcal {B}_{0}^{\top }(k)\mathcal {P}(k+1) & 0 & 0\\ * & * & \mathcal {P}(k+1) & 0 & 0 \\ * & * & * & \mathrm {\Phi }_{M}\big (\mathcal {P}(k+1)\big ) & 0 \\ * & * & * & * & I \\ \end {array} \right ] \succ 0,\\ \left [ \begin {array}{{ccc}} \eta I - \overline {\Psi }(k) & \mathcal {B}_{0}^{\top }(k)\mathcal {P}(k+1) & \overline {\mathcal {B}}(k)\mathcal {P}(k+1) \\ * & \mathcal {P}(k+1) & 0 \\ * & * & \mathrm {\Phi }_{M}(\mathcal {P}(k+1))\\ \end {array} \right ]\succ 0,\\ \left [ \begin {array}{{ccc}} \mathcal {P}(N) & 0 & \overline {\mathcal {C}}(N)\\ * & \eta I & 0 \\ * & * & I \\ \end {array} \right ] \succ 0, \quad \left [ \begin {array}{{cc}} \eta I-\overline {\Psi }(N) & 0\\ 0 & I \end {array} \right ]\succ 0,\\ \prod \limits _{k=0}^{N}\det \overline {\Psi }(k) \geqslant e^{2a}(\eta -\gamma ^2)^{m_w(N+1)}. \end {gathered}$$
Considering (4.56) and (4.59), it is obvious that the inequalities contain nonlinear components in the form of the products of unknown matrices in the products \(\mathcal {A}_i(k)\mathcal {P}(k+1)\) and \(\mathcal {B}_{i}^{\top }(k)\mathcal {P}(k+1)\).

To eliminate nonlinear terms from the inequalities, we use the following change of variables in the inequalities:

$$ \mathcal {X}(k) = \left ( \begin {array}{{cc}} 0 & 0\\ W(k) & H(k) \end {array} \right ),\quad \mathcal {Y}(k) = \mathcal {X}(k)\mathcal {P}(k+1).$$
(A.2.1)
Applying the change of variables (A.2.1) to the system of inequalities (4.56), (4.59), we obtain
$$ \mathcal {A}(k)= \mathcal {A}^0_0(k)+\mathcal {X}(k)\mathcal {A}^1_0(k)+\sum \limits _{i=1}^{M} \lambda _{1i}(k)\left (\mathcal {A}_{i}^{0}(k)+\mathcal {X}(k)\mathcal {A}_{i}^{1}(k)\right ), $$
(A.2.2)
$$ \mathcal {B}(k)= \mathcal {B}^0_0(k)+\mathcal {X}(k)\mathcal {B}^1_0(k)+\sum \limits _{i=1}^{M} \lambda _{1i}(k)\left (\mathcal {B}_{i}^{0}(k)+\mathcal {X}(k)\mathcal {B}_{i}^{1}(k)\right ), $$
(A.2.3)
where
$$ \mathcal {A}^0_0(k) = \left (\begin {array}{{cc}} A_0(k)& 0\\ A_0(k) & 0 \end {array}\right ),\quad \mathcal {A}^1_0(k) = \left (\begin {array}{{cc}} -I & I\\ -C_{y_0}(k)& 0\end {array}\right ), $$
(A.2.4)
$$ \mathcal {A}^0_i(k) = \left (\begin {array}{{cc}}A_i(k) & 0\\ A_i(k) & 0\end {array}\right ),\quad \mathcal {A}^1_i(k) = \left (\begin {array}{{cc}} 0 & 0\\ -C_{y_i}(k)& 0 \end {array}\right ), $$
(A.2.5)
$$ \mathcal {B}^0_0(k) = \left (\begin {array}{c} B_0(k) \\ B_0(k)\end {array}\right ),\quad \mathcal {B}^1_0(k) = \left (\begin {array}{c}0\\ -D_{y_0}\end {array}\right ), $$
(A.2.6)
$$ \mathcal {B}^0_i(k) = \left (\begin {array}{c} B_i(k) \\ B_i(k)\end {array}\right ),\quad \mathcal {B}^1_i(k) = \left (\begin {array}{c} 0\\ -D_{y_i}\end {array}\right ). $$
(A.2.7)

Substituting (A.2.1)– (A.2.7) into the matrix inequalities, we eliminate the nonlinear components from the system of matrix inequalities. As a result, we obtain the desired LMI (4.60)–(4.64). \(\quad \blacksquare \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, I.R. Anisotropy-Based Filtering for Linear Discrete Time-Varying Systems with Multiplicative Noises on a Finite Horizon. Autom Remote Control 82, 968–994 (2021). https://doi.org/10.1134/S0005117921060023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921060023

Keywords

Navigation