Skip to main content
Log in

On Low Latency Uplink Scheduling for Cellular Haptic Communication to Support Tactile Internet

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Haptic communication is a form of non-verbal communication involving touch and feel. Haptic communication is a major requirement for the Tactile Internet that deals with mechanism to transmit touch, feel, and skills between two geographically distant entities, in realtime. Lately, haptic communication has become an essential requirement for variety of realtime robotic and Augmented/Virtual Reality applications. With very stringent delay and reliability requirements, haptic communication poses significant challenges for network engineers. This becomes further complicated when the cellular technology is used as the access medium for haptic communication. Since cellular networks are resource constrained, accommodating haptic users along with existing non-haptic users become a hard scheduling problem. In this paper, we propose an efficient latency-aware uplink resource allocation scheme satisfying end-to-end delay requirements of haptic users in a Long Term Evolution based cellular network. The proposed scheme first predicts the downlink and processing delays for users’ transmission flows. Subsequently, the model apply an optimal scheduling scheme for the uplink transmissions which satisfies expected end-to-end latency constraint. Our extensive simulations indicate that the proposed algorithm outperforms some of the widely used state-of-the-art scheduling schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Different haptic applications may have different delay-requirements.

  2. Frames are further divided into smallest units of frequency and time chunk called Resource Blocks (RBs). We use the UE and user interchangeably.

  3. We have considered the average the data traffic rate of UEs in order to give a fair and optimal weight to each UE.

References

  1. Holland, O., Steinbach, E., Prasad, R. V., Liu, Q., Dawy, Z., Aijaz, A., Pappas, N., Chandra, K., Rao, V. S., Oteafy, S., Eid, M., Luden, M., Bhardwaj, A., Liu, X., Sachs, J., & Araújo, J. (2019). The ieee 1918.1 “tactile internet” standards working group and its standards. Proceedings of the IEEE, 107(2), 256–279.

  2. Chowdhury, M., Steinbach, E., Kellerer, W., & Maier, M. (2018). Context-aware task migration for hart-centric collaboration over fiwi based tactile internet infrastructures. IEEE Transactions on Parallel and Distributed Systems, 29(6), 1231–1246. https://doi.org/10.1109/TPDS.2018.2791406.

    Article  Google Scholar 

  3. Sankaran, N. K., Chembrammel, P., Siddiqui, A., Snyder, K., & Kesavadas, T. (2018). Design and development of surgeon augmented endovascular robotic system. IEEE Transactions on Biomedical Engineering, 65(11), 2483–2493. https://doi.org/10.1109/TBME.2018.2800639.

    Article  Google Scholar 

  4. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., & Fettweis, G. (2016). 5g-enabled tactile internet. IEEE Journal on Selected Areas in Communications, 34(3), 460–473. https://doi.org/10.1109/JSAC.2016.2525398.

    Article  Google Scholar 

  5. Van Den Berg, D., Glans, R., De Koning, D., Kuipers, F. A., Lugtenburg, J., Polachan, K., et al. (2017). Challenges in haptic communications over the tactile internet. IEEE Access, 5, 23502–23518. https://doi.org/10.1109/ACCESS.2017.2764181.

    Article  Google Scholar 

  6. Hokayem, P. F., & Spong, M. W. (2006). Bilateral teleoperation: An historical survey. Automatica, 42(12), 2035–2057. https://doi.org/10.1016/j.automatica.2006.06.027.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lee, J., & Payandeh, S. (2015). Haptic teleoperation systems: Signal processing perspective. Springer.

  8. Zareinia, K., Maddahi, Y., Ng, C., Sepehri, N., & Sutherland, G. R. (2015). Performance evaluation of haptic hand-controllers in a robot-assisted surgical system. The International Journal of Medical Robotics and Computer Assisted Surgery, 11(4), 486–501. https://doi.org/10.1002/rcs.1637.

    Article  Google Scholar 

  9. Aiple, M., & Schiele, A. (2013) Pushing the limits of the cybergrasp\(^{\text{TM}}\) for haptic rendering. In 2013 IEEE international conference on robotics and automation (pp. 3541–3546). https://doi.org/10.1109/ICRA.2013.6631073

  10. Lawrence, D. (1993). Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation, 9(5), 624–637. https://doi.org/10.1109/70.258054.

    Article  Google Scholar 

  11. Steinbach, E., Hirche, S., Ernst, M., Brandi, F., Chaudhari, R., Kammerl, J., & Vittorias, I. (2012). Haptic communications. Proceedings of the IEEE, 100(4), 937–956. https://doi.org/10.1109/JPROC.2011.2182100.

    Article  Google Scholar 

  12. Sharma, S. K., Woungang, I., Anpalagan, A., & Chatzinotas, S. (2020). Toward tactile internet in beyond 5g era: Recent advances, current issues, and future directions. IEEE Access, 8, 56948–56991. https://doi.org/10.1109/ACCESS.2020.2980369.

    Article  Google Scholar 

  13. Cizmeci, B., Chaudhari, R., Xu, X., Alt, N., & Steinbach, E. (2014). A visual-haptic multiplexing scheme for teleoperation over constant-bitrate communication links.

  14. Cen, Z., Mutka, M., Liu, Y., Goradia, A., & Xi, N. (2005). Qos management of supermedia enhanced teleoperation via overlay networks. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1630–1635). https://doi.org/10.1109/IROS.2005.1545296

  15. Elhadad, M. I., El-Rabaie, E. S. M., & Abd-Elnaby, M. (2016). Resource allocation for real-time services using earliest due date mechanism in LTE networks. In Proceedings of the IEEE JEC-ECC (pp. 9–12).

  16. Yilmaz, O. N. C., Wang, Y. P. E., Johansson, N. A., Brahmi, N., Ashraf, S. A., & Sachs, J. (2015). Analysis of ultra-reliable and low-latency 5g communication for a factory automation use case. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1190–1195). https://doi.org/10.1109/ICCW.2015.7247339

  17. Ruiz de Temino, L. A. M., Berardinelli, G., Frattasi, S., & Mogensen, P. (2008). Channel-aware scheduling algorithms for sc-fdma in lte uplink (pp. 1–6). https://doi.org/10.1109/PIMRC.2008.4699645

  18. Pan, M. S., Lin, T. M., Chiu, C. Y., & Wang, C. Y. (2016). Downlink traffic scheduling for LTE-A small cell networks with dual connectivity enhancement. IEEE Communications Letters, 20(4), 796–799. https://doi.org/10.1109/LCOMM.2016.2522404.

    Article  Google Scholar 

  19. Ragaleux, A., Baey, S., & Karaca, M. (2017). Standard-compliant LTE-A uplink scheduling scheme with quality of service. IEEE Transactions on Vehicular Technology, 66(8), 7207–7222. https://doi.org/10.1109/TVT.2017.2654299.

    Article  Google Scholar 

  20. Hammad, K., Moubayed, A., Primak, S. L., & Shami, A. (2018). Qos-aware energy and jitter-efficient downlink predictive scheduler for heterogeneous traffic LTE networks. IEEE Transactions on Mobile Computing, 17(6), 1411–1428. https://doi.org/10.1109/TMC.2017.2771353.

    Article  Google Scholar 

  21. Ferdosian, N., Othman, M., Ali, B. M., & Lun, K. Y. (2017). Fair-QoS broker algorithm for overload-state downlink resource scheduling in LTE networks. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2017.2702109.

    Article  Google Scholar 

  22. Aijaz, A. (2016). Towards 5G-enabled tactile Internet: Radio resource allocation for haptic communications. In Proceedings of the IEEE WCNC workshops (pp. 145–150). https://doi.org/10.1109/WCNCW.2016.7552690

  23. Lien, S. Y., Lee, J., & Liang, Y. C. (2016). Random access or scheduling: Optimum LTE licensed-assisted access to unlicensed spectrum. IEEE Communications Letters, 20(3), 590–593.

    Article  Google Scholar 

  24. Donthi, S. N., & Mehta, N. B. (2011). Joint performance analysis of channel quality indicator feedback schemes and frequency-domain scheduling for LTE. IEEE Transactions on Vehicular Technology, 60(7), 3096–3109.

    Article  Google Scholar 

  25. Wang, Y. C., & Tsai, T. Y. (2017). A pricing-aware resource scheduling framework for LTE networks. IEEE/ACM Transactions on Networking, 25(3), 1445–1458. https://doi.org/10.1109/TNET.2016.2629501.

    Article  Google Scholar 

  26. Mahdavi-Doost, H., Prasad, N., & Rangarajan, S. (2016). Energy efficient downlink scheduling in LTE-advanced networks. In 2016 8th International conference on communication systems and networks (COMSNETS) (pp. 1–8). https://doi.org/10.1109/COMSNETS.2016.7439928

  27. Kanagasabai, A., & Nayak, A. (2015). Opportunistic dual metric scheduling algorithm for LTE uplink. In Proceedings of the IEEE ICC workshop (pp. 1446–1451). https://doi.org/10.1109/ICCW.2015.7247382

  28. Carpin, M., Zanella, A., Rasool, J., Mahmood, K., Grøndalen, O., & Østerbø, O. N. (2015). A performance comparison of LTE downlink scheduling algorithms in time and frequency domains. In Proceedings of the IEEE ICC (pp. 3173–3179).

  29. Wu, Y., Ni, K., Zhang, C., Qian, L. P., & Tsang, D. H. (2018). Noma-assisted multi-access mobile edge computing: A joint optimization of computation offloading and time allocation. IEEE Transactions on Vehicular Technology, 67(12), 12244–12258.

    Article  Google Scholar 

  30. Ali, S., & Zeeshan, M. (2012). A utility based resource allocation scheme with delay scheduler for LTE service-class support. In Proceedings of the IEEE WCNC (pp. 1450–1455).

  31. Decreusefond, L., Vu, T. T., & Martins, P. (2013). Modeling energy consumption in cellular networks. In Proceedings of the ITC (pp. 1–7).

Download references

Acknowledgements

This work was done as a part of TCS Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bighnaraj Panigrahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, A., Panigrahi, B., Rath, H.K. et al. On Low Latency Uplink Scheduling for Cellular Haptic Communication to Support Tactile Internet. Wireless Pers Commun 121, 1471–1488 (2021). https://doi.org/10.1007/s11277-021-08680-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08680-0

Keywords

Navigation