Skip to main content
Log in

How Carbon-Based Nanosheets Protect: Mechanistic Models

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Graphite- and graphene-based surface protective films are shown to undergo different tangent impacts in working units and mechanisms. The thicker the graphite film is, the more it is subjected to deterioration because tangential components of acting forces turn into normal ones because of distortion of the graphite lattice and elasticity of the interlayer van der Waals bonds. Critical pressure of sliding friction force on the film has been estimated according to real conditions in a combustion engine. The amplification effect has been evaluated and shown to be roughly proportional to a number of layers in the film. The function-amplifier has been constructed, its asymptotical behaviour at small and big number of layers has been analysed. An expression in quadrature representing the working surface wear on the basis of deteriorated film area and working pressure with its fluctuations has been proposed. Its structure is related to a mutual correction of factors related to how (i) intensively and (ii) extensively the surface fragments are affected through the wear.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This is related to some error because the action of the force’s normal component can be transmitted with some retardation and weakening along the lattice in the tangential direction. However, on account of a big number of layers in the film (about 200 for the film thickness 60 nm as an example) this effect is negligible.

References

  1. Deepika, S.: Nanotechnology implications for high performance lubricants. SN Appl. Sci. 2, 1128 (2020). https://doi.org/10.1007/s42452-020-2916-8

    Article  CAS  Google Scholar 

  2. Jazaa, Y.: Effect of Nanoparticle Additives on the Tribological Behavior of Oil Under Boundary Lubrication. Iowa State University Ames, Iowa (2018)

    Google Scholar 

  3. Anand, G., Saxena, P.: A review on graphite and hybrid nano-materials as lubricant additives. IOP Conf. Series 149, 012201 (2016). https://doi.org/10.1088/1757-899X/149/1/012201

    Article  Google Scholar 

  4. Zin, V., Barison, S., Agresti, F., Colla, L., Pagura, C., Fabrizio, M.: Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Adv. 6, 59477 (2016). https://doi.org/10.1039/c6ra12029f

    Article  CAS  Google Scholar 

  5. Mohamed, A., Ali, S., Osman, T.A., Kamel, B.M.: Development and manufacturing an automated lubrication machine test for nano grease. J. Mater. Res. Technol. 9(2054), 2062 (2020). https://doi.org/10.1016/j.jmrt.2019.12.038

    Article  CAS  Google Scholar 

  6. Prasher, R., Song, D., Wang, J., Phelan, P.: Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 89, 133108 (2006). https://doi.org/10.1063/1.2356113

    Article  CAS  Google Scholar 

  7. Di Lecce, S., Kornyshev, A.A., Urbakh, M., Bresme, F.: Lateral ordering in nanoscale ionic liquid films between charged surfaces enhances lubricity. ACS Nano 14(13256), 13267 (2020). https://doi.org/10.1021/acsnano.0c05043

    Article  CAS  Google Scholar 

  8. Niste, V.B., Ratoi, M.: Tungsten dichalcogenide lubricant nanoadditives for demanding applications. Mater. Today Commun. 8(1), 11 (2016). https://doi.org/10.1016/j.mtcomm.2016.04.015

    Article  CAS  Google Scholar 

  9. Wu, Y.Y., Tsui, W.C., Liu, T.C.: Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262(819), 825 (2007). https://doi.org/10.1016/j.wear.2006.08.021

    Article  CAS  Google Scholar 

  10. Cheng, Z.-L., Qin, X.-X.: Study on friction performance of graphene-based semi-solid grease Chin. Chem. Lett. 25(1305), 1307 (2014). https://doi.org/10.1016/j.cclet.2014.03.010

    Article  CAS  Google Scholar 

  11. Younes, H., Christensen, G., Groven, L., Hong, H., Smith, P.: Three dimensional (3D) percolation network structure: key to form stable carbon nano grease. Rev Mex. Trastor Aliment 14(375), 382 (2016). https://doi.org/10.1016/j.jart.2016.09.002

    Article  Google Scholar 

  12. Fan, X., Xia, Y., Wang, L., Li, W.: Multilayer graphene as a lubricating additive in bentone grease. Tribol. Lett. 55(455), 464 (2014). https://doi.org/10.1007/s11249-014-0369-1

    Article  CAS  Google Scholar 

  13. Bakunin, V.N., Suslov, A.Y.Y., Kuzmina, G.N., Parenago, O.P., Topchiev, V.: Synthesis and application of inorganic nanoparticles as lubricant components: a review. J. Nanopart. Res. 6(273), 284 (2004)

    Google Scholar 

  14. MacWan, D.P., Dave, P.N., Chaturvedi, S.: A review on nano-TiO2 sol-gel type syntheses and its applications. J. Mater. Sci. 46(3669), 3686 (2011)

    Google Scholar 

  15. Lidorenko, N.S., Chizhik, S.P., Gladkikh, N.T., Grigorjeva, L.K., Kuklin, R.N.: O roli razmernogo faktora v sdvige khimicheskogo ravnovesiya [About the role of dimensional factor in a chemical equilibrium shear]. Doklady AN SSSR 257(1114), 1118 (1981)

    Google Scholar 

  16. Vigdorowitsch, M., Tsygankova, L.E., Vigdorovich, V.I., Knyazeva, L.G.: To the thermodynamic properties of nano-ensembles. Mater. Sci. Eng. B 263C, 114897 (2021). https://doi.org/10.1016/j.mseb.2020.114897

    Article  CAS  Google Scholar 

  17. Vigdorowitsch, M.: Thermodynamics and stability of metallic nanoensembles. In: Gluzman, S. (ed.) Physics and Mechanics of Structured Media. Elsevier, Amsterdam (2021)

    Google Scholar 

  18. Huang, H.D., Tu, J.P., Gan, L.P., Li, C.Z.: An investigation on tribological properties of graphite nanosheets as oil additive. Wear 261(140), 144 (2006). https://doi.org/10.1016/j.wear.2005.09.010

    Article  CAS  Google Scholar 

  19. Kamel, B.M., Mohamed, A., El Sherbiny, M., Abed, K.A., Abd-Rabou, M.: Tribological properties of graphene nanosheets as an additive in calcium grease. J. Dispersion Sci. Technol. 38, 1495–1500 (2017). https://doi.org/10.1080/01932691.2016.1257390

    Article  CAS  Google Scholar 

  20. Kamel, B.M., Mohamed, A., El-Sherbiny, M., Abed, K.A., Abd-Rabou, M.: Rheological characteristics of modified calcium grease with graphene nanosheets. Fullerenes Nanotubes Carbon Nanostruct. 25(429), 434 (2017). https://doi.org/10.1080/1536383X.2017.1330265

    Article  Google Scholar 

  21. Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett 8(3498), 3502 (2008). https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  22. Ordin, S.V., Sharupin, B.N., Fedorov, M.I.: Normal lattice vibrations and the crystal structure of anisotropic modifications of boron nitride. Semiconductors 32(924), 932 (1998). https://doi.org/10.1134/1.1187516

    Article  Google Scholar 

  23. Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir Effect. Oxford University Press, Oxford (2015)

    Google Scholar 

  24. Klinov, I.Ya.: Corrosion of chemical equipment and corrosion-resistant materials [Korroziya khimicheskoz apparatury i korrozionno-stojkie materialy]. Mashinostroenie, Moscow (1967)

  25. Wang, W., Dai, S., Li, X., Yang, J., Srolovitz, D.J., Zheng, Q.: Measurement of the cleavage energy of graphite. Nat. Commun. 6, 7853 (2015). https://doi.org/10.1038/ncomms8853

    Article  CAS  Google Scholar 

  26. Deng, S., Berry, V.: Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197 (2016). https://doi.org/10.1016/j.mattod.2015.10.002

    Article  CAS  Google Scholar 

  27. Liu, H., Li, L.: Graphitic materials: intrinsic hydrophilicity and its implications. Extreme Mech. Lett. 14, 44 (2017). https://doi.org/10.1016/j.eml.2017.01.010

    Article  Google Scholar 

  28. Li, Y., Lu, Y., Adelhelm, P., Titirici, M.-M., Hu, Y.-S.: Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655 (2019). https://doi.org/10.1039/C9CS00162J

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organisation for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Vigdorowitsch.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigdorowitsch, M., Ostrikov, V.V., Sazonov, S.N. et al. How Carbon-Based Nanosheets Protect: Mechanistic Models. Tribol Lett 69, 102 (2021). https://doi.org/10.1007/s11249-021-01478-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01478-y

Keywords

Navigation