Skip to main content
Log in

Fast Spontaneous Transport of a Non-wetting Fluid in a Disordered Nanoporous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The experimental study of cooperative fast transport of non-wetting fluid in a disordered nanoporous medium is carried out in this work. New experimental data for simultaneous measurement of fluid flow, filled pore volume and pressure have been obtained. Dependencies of critical pressure and flow on porous particle mass and rapid compression energy have also been established. A new transport mechanism is proposed. The dynamics of fluid transport is represented as a process of evolution of two macroscopic growing modes of transport—spontaneous transport that occurs when new critical pressure of dynamic percolation transition and fluid transport caused by a constant critical pressure under impact compression of nanoporous particles suspension. Following the theory of critical dynamics of multiscale phenomena, a condition for the interaction of modes is proposed. Taking into account this interaction, rapid spontaneous transport is adjusted to the slow impact of impact compression, and the experimental dependencies should be described by the slow mode—impact compression. Such transport occurs simultaneously in two different time scales and is determined by the properties of spontaneous transport. The experimental dependencies are quantitatively described in the kinetic model. Under conditions of filled pores, the response of a fluid transport to impact is characterized by positive feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrikosov, A.: ’Kinetic equation’in the percolation theory. J. Phys. C Solid State Phys. 12(17), 3419 (1979)

    Article  Google Scholar 

  • Beenakker, J., Borman, V., Krylov, S.Y.: Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sieving. Chem. Phys. Lett. 232(4), 379 (1995)

    Article  Google Scholar 

  • Belogorlov, A., Borman, V., Byrkin,V., Paryohin, D., Tronin, V.: System nanoporous media-non-wetting liquid, as a basis for the development of shock damper. In: Journal of Physics: Conference Series, 751, 012031 (2016).https://doi.org/10.1088/1742-6596/751/1/012031

  • Bogomolov, V.N.: Capillary phenomena in extremely thin zeolite channels and metal-dielectric interaction. Phys. Rev. B 51(23), 17040 (1995)

    Article  Google Scholar 

  • Borman, V., Teplyakov, V., Tronin, V., Tronin, I., Troyan, V.: Molecular transport in subnanometer channels. JETP 90(6), 950 (2000)

    Article  Google Scholar 

  • Borman, V., Belogorlov, A., Grekhov, A.M., Tronin, V.N., Troyan, V.I.: Observation of dynamic effects in the percolation transition in a ”nonwetting liquid-nanoporous body” system. JETP Lett. 74(5), 258 (2001). https://doi.org/https://doi.org/10.1134/1.1417161

  • Borman, V., Tronin, V., Tronin, I., Troyan, V.: Transport of a two-component mixture in one-dimensional channels. JETP 98(1), 102 (2004)

    Article  Google Scholar 

  • Borman, V., Belogorlov, A., Grekhov, A., Lisichkin, G., Tronin, V., Troyan, V.: The percolation transition in filling a nanoporous body by a nonwetting liquid. J. Exper. Theor. Phys. 100(2), 385 (2005) https://doi.org/10.1134/1.1884677

  • Borman, V., Belogorlov, A., Lisichkin, G., Tronin, V., Troyan, V.: Investigation of the dynamics of a percolation transition under rapid compression of a nanoporous body-nonwetting liquid system. J. Exper. Theor. Phys. 108(3), 389 (2009)

    Article  Google Scholar 

  • Borman, V., Belogorlov, A., Byrkin, V., Tronin, V., Troyan, V.: Observation of a dispersion transition and the stability of a liquid in a nanoporous medium. JETP Lett. 95(10), 511 (2012)

    Article  Google Scholar 

  • Borman, V.D., Tronin, I.V., Tronin, V.N., Troyan, V.I., Vasiliev, O.S.: Correlation effects in kinetics of one-dimensional atomic systems. J. Nanomater. 2013, 8 (2013)

    Article  Google Scholar 

  • Borman, V., Belogorlov, A., Byrkin, V., Tronin, V.: Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88(5) (2013). https://doi.org/10.1103/PhysRevE.88.052116

  • Borman, V.D., Belogorlov, A.A., Tronin, V.N.: Anomalously slow relaxation of interacting liquid nanoclusters confined in a porous medium. Phys. Rev. E 93(2), 022142 (2016). https://doi.org/10.1103/PhysRevE.93.022142

  • Borman, V.D., Belogorlov, A.A., Tronin, V.N.: Response of a nanofluid system based on a porous medium to an impact loading. Colloid. Surf. A Physicochem. Eng. Aspect. 537, 540 (2018)

    Article  Google Scholar 

  • Cao, D., Huang, H., Lan, Y., Chen, X., Yang, Q., Liu, D., Gong, Y., Xiao, C., Zhong, C., Peng, S.: Ultrahigh effective H 2/D 2 separation in an ultramicroporous metal-organic framework material through quantum sieving. J. Mater. Chem. A 6(41), 19954 (2018)

    Article  Google Scholar 

  • Chen, X., Surani, F.B., Kong, X., Punyamurtula, V.K., Qiao, Y.: Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 89(24), 241918 (2006). https://doi.org/10.1063/1.2405852

  • Eroshenko, V., Regis, R.C., Soulard, M., Patarin, J.: Energetics: a new field of applications for hydrophobic zeolites. J. Am. Chem. Soc. 123(33), 8129 (2001)

    Article  Google Scholar 

  • Fraux, G., Coudert, F.X., Boutin, A., Fuchs, A.H.: Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices. Chem. Soc. Rev. 46(23), 7421 (2017)

    Article  Google Scholar 

  • Fraux, G., Boutin, A., Fuchs, A.H., Coudert, F.X.: Structure, dynamics and thermodynamics of intruded electrolytes in ZIF-8. J. Phys. Chem. C (2019). https://doi.org/10.1021/acs.jpcc.9b02718

  • Gao, X., Ji, G., Bhatia, S., Nicholson, D.: Special issue on ”transport of fluids in nanoporous materials”. Multidiscip. Digital Publ. Inst. (2019). https://doi.org/10.3390/pr7010014

  • Ghosh, S.K.: Metal-Organic Frameworks (MOFs) for Environmental Applications. Elsevier (2019)

  • Haken, H.: Synergetics. Springer (1978). https://doi.org/10.1007/978-3-642-96469-5

  • Han, A., Lu, W., Punyamurtula, V.K., Chen, X., Surani, F.B., Kim, T., Qiao, Y.: Effective viscosity of glycerin in a nanoporous silica gel. J. Appl. Phys. 104(12), 124908 (2008). https://doi.org/10.1063/1.3020535

  • Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034 (2006)

    Article  Google Scholar 

  • Hummer, G., Rasaiah, J.C., Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414(6860), 188 (2001)

    Article  Google Scholar 

  • Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284 (1940)

    Article  Google Scholar 

  • Lefevre, B., Saugey, A., Barrat, J.L., Bocquet, L., Charlaix, E., Gobin, P.F., Vigier, G.: Intrusion and extrusion of water in highly hydrophobic mesoporous materials: effect of the pore texture. Colloid. Surf. A Physicochem. Eng. Aspect. 241(1–3), 265 (2004)

    Article  Google Scholar 

  • Li, M., Lu, W.: Adaptive liquid flow behavior in 3D nanopores. Phys. Chem. Chem. Phys. 19(26), 17167 (2017)

    Article  Google Scholar 

  • Lin, R.B., Li, L., Zhou, H.L., Wu, H., He, C., Li, S., Krishna, R., Li, J., Zhou, W., Chen, B.: Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater. 17(12), 1128 (2018)

    Article  Google Scholar 

  • Landau, L., Lifshitz, E.: Fluid mechanics, Course of Theoretical Physics. 6. Butterworth-Heinemann (1987)

  • Lide, D., Haynes, W.: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data-/Editor-in-Chief, David R. Lide; ass. ed. WM Mickey Haunes

  • Lisichkin, G., Fadeev, A.Y., Serdan, A., Nesterenko, P., Mingalev, P., Furman, D.: Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), in Russian, Fizmatlit (2003)

  • Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer, Netherlands (2004). https://doi.org/10.1007/978-1-4020-2303-3

  • Ma, S.: Modern Theory Of Critical Phenomena. Routledge, New York (2001)

  • Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064), 44 (2005)

    Article  Google Scholar 

  • Mortada, B., Chaplais, G., Nouali, H., Marichal, C., Patarin, J.: Phase transformations of metal-organic frameworks MAF-6 and ZIF-71 during intrusion-extrusion experiments. J. Phys. Chem. C 123(7), 4319 (2019)

    Article  Google Scholar 

  • Nizkaya, T.V., Asmolov, E.S., Vinogradova, O.I.: Advective superdiffusion in superhydrophobic microchannels. Phys. Rev. E 96(3), 033109 (2017). https://doi.org/10.1103/PhysRevE.96.033109

  • Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., Carter, W.B.: Ultralight metallic microlattices. Science 334(6058), 962 (2011)

    Article  Google Scholar 

  • Suciu, C.V., Iwatsubo, T., Deki, S.: Investigation of a colloidal damper. J. Colloid Interface Sci. 259(1), 62 (2003)

    Article  Google Scholar 

  • Sun, Y., Guo, Z., Xu, J., Xu, X., Liu, C., Li, Y.: A candidate of mechanical energy mitigation system: dynamic and quasi-static behaviors and mechanisms of zeolite \(\beta\)/water system. Mater. Des. 66, 545 (2015)

    Article  Google Scholar 

  • Sun, Y., Xu, C., Lu, W., Li, Y.: Rate effect of liquid infiltration into mesoporous materials. RSC Adv. 7(2), 971 (2017)

    Article  Google Scholar 

  • Sun, Y., Li, Y., Zhao, C., Wang, M., Lu, W., Qiao, Y.: Crushing of circular steel tubes filled with nanoporous-materials-functionalized liquid. Int. J. Damag. Mech. 27(3), 439 (2018)

    Article  Google Scholar 

  • Surani, F.B., Kong, X., Panchal, D.B., Qiao, Y.: Energy absorption of a nanoporous system subjected to dynamic loadings. Appl. Phys. Lett. 87(16), 163111 (2005). https://doi.org/10.1063/1.2106002

  • Xu, B., Chen, X., Lu, W., Zhao, C., Qiao, Y.: Non-dissipative energy capture of confined liquid in nanopores. Appl. Phys. Lett. 104(20), 203107 (2014). https://doi.org/10.1063/1.4878097

  • Xu, B., Qiao, Y., Chen, X.: Mitigating impact/blast energy via a novel nanofluidic energy capture mechanism. J. Mech. Phys. Solids 62, 194 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to G.V. Lisichkin for the L23 sample.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Anton Belogorlov and Ivan Tronin. The first draft of the manuscript was written by Vladimir Borman. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anton Belogorlov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Russian Science Foundation (project no. 18-13-00398).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borman, V., Belogorlov, A. & Tronin, I. Fast Spontaneous Transport of a Non-wetting Fluid in a Disordered Nanoporous Medium. Transp Porous Med 139, 21–44 (2021). https://doi.org/10.1007/s11242-021-01638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01638-7

Keywords

PACS

Navigation