Skip to main content
Log in

How microbiological tests reflect bacterial pathogenesis and host adaptation

  • Bacterial, Fungal and Virus Molecular Biology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Historically, clinical microbiological laboratories have often relied on isolation of pure cultures and phenotypic testing to identify microorganisms. These clinical tests are often based on specific biochemical reactions, growth characteristics, colony morphology, and other physiological aspects. The features used for identification in clinical laboratories are highly conserved and specific for a given group of microbes. We speculate that these features might be the result of evolutionary selection and thus may reflect aspects of the life cycle of the organism and pathogenesis. Indeed, several of the metabolic pathways targeted by diagnostic tests in some cases may represent mechanisms for host colonization or pathogenesis. Examples include, but are not restricted to, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella enterica, Shigella spp., and enteroinvasive Escherichia coli (EIEC). Here, we provide an overview of how some common tests reflect molecular mechanisms of bacterial pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Hitchens AP, Leikind MC (1939) The Introduction of Agar-agar into Bacteriology. J Bacteriol 37(5):485–493. https://doi.org/10.1128/JB.37.5.485-493.1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith JL (1894) A Note on a New Method of Preparing Culture Media. Br Med J 1(1744):1177. https://doi.org/10.1136/bmj.1.1744.1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petri RJ (1887) Eine kleine Modifikation des Koch’schen Plattenverfahrens. Zentralblatt für Bakteriologie 1:279–280

    Google Scholar 

  4. Walker HH, Winslow CE, Mooney MG (1934) Bacterial cell metabolism under anaerobic conditions. J Gen Physiol 17(3):349–357. https://doi.org/10.1085/jgp.17.3.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor AE (1905) On the preparation of salt-free culture media and the growth of bacteria upon them. J Exp Med 7(1):111–118. https://doi.org/10.1084/jem.7.1.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sullivan MX (1905) Synthetic Culture Media and the Biochemistry of bacterial Pigments. J Med Res 14(1):109–160

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenbach FJ (1884) Mikro-organismen bei den Wund-Infections-Krankheiten des Menschen. J.F. Bergmann, Wiesbaden

  8. Marshall JH, Wilmoth GJ (1981) Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. J Bacteriol 147(3):900–913. https://doi.org/10.1128/jb.147.3.900-913.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW (2015) Manual of Clinical Microbiology, Eleventh Edition. American Society of Microbiology. https://doi.org/10.1128/9781555817381

  10. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661. https://doi.org/10.1128/cmr.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kluytmans J, van Belkum A, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10(3):505–520. https://doi.org/10.1128/cmr.10.3.505-520.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall JH, Wilmoth GJ (1981) Proposed pathway of triterpenoid carotenoid biosynthesis in Staphylococcus aureus: evidence from a study of mutants. J Bacteriol 147(3):914–919. https://doi.org/10.1128/jb.147.3.914-919.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beard-Pegler MA, Stubbs E, Vickery AM (1988) Observations on the resistance to drying of staphylococcal strains. J Med Microbiol 26(4):251–255. https://doi.org/10.1099/00222615-26-4-251

    Article  CAS  PubMed  Google Scholar 

  14. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202(2):209–215. https://doi.org/10.1084/jem.20050846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430(1):37–48. https://doi.org/10.1016/j.abb.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  16. Liu CI, Liu GY, Song Y, Yin F, Hensler ME, Jeng WY, Nizet V, Wang AH, Oldfield E (2008) A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319(5868):1391–1394. https://doi.org/10.1126/science.1153018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clauditz A, Resch A, Wieland K-P, Peschel A, Götz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74(8):4950–4953. https://doi.org/10.1128/IAI.00204-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khodade VS, Sharath Chandra M, Banerjee A, Lahiri S, Pulipeta M, Rangarajan R, Chakrapani H (2014) Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors. ACS Med Chem Lett 5(7):777–781. https://doi.org/10.1021/ml5001118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, Poralla K, Götz F (1994) Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4’-diaponeurosporene of Staphylococcus aureus. J Bacteriol 176(24):7719–7726. https://doi.org/10.1128/jb.176.24.7719-7726.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H (2019) Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist 12:2151–2160. https://doi.org/10.2147/IDR.S193649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saising J, Hiranrat A, Mahabusarakam W, Ongsakul M, Voravuthikunchai SP (2008) Rhodomyrtone from <i>Rhodomyrtus tomentosa</i> (Aiton) Hassk. as a Natural Antibiotic for Staphylococcal Cutaneous Infections. J Health Sci 54 (5):589–595. https://doi.org/10.1248/jhs.54.589

  22. Lee JH, Park JH, Cho MH, Lee J (2012) Flavone reduces the production of virulence factors, staphyloxanthin and α-hemolysin, in Staphylococcus aureus. Curr Microbiol 65(6):726–732. https://doi.org/10.1007/s00284-012-0229-x

    Article  CAS  PubMed  Google Scholar 

  23. Reyes EA, Bale MJ, Cannon WH, Matsen JM (1981) Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J Clin Microbiol 13(3):456–458. https://doi.org/10.1128/jcm.13.3.456-458.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44(2):301–307

    CAS  PubMed  Google Scholar 

  25. Otto LA, Pickett MJ (1976) Rapid method for identification of gram-negative, nonfermentative bacilli. J Clin Microbiol 3(6):566–575

    Article  CAS  Google Scholar 

  26. Morris MJ, Young VM, Moody MR (1978) Evaluation of a multitest system for identification of saccharolytic pseudomonads. Am J Clin Pathol 69(1):41–47. https://doi.org/10.1093/ajcp/69.1.41

    Article  CAS  PubMed  Google Scholar 

  27. Rosenthal SL, Freundlich LF, Washington W (1978) Laboratory evaluation of a multitest system for identification of gram-negative organisms. Am J Clin Pathol 70(6):914–917. https://doi.org/10.1093/ajcp/70.6.914

    Article  CAS  PubMed  Google Scholar 

  28. Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M, Ader F, Courcol R, Guery BP, Faure K (2008) Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 14(4):337–343. https://doi.org/10.1111/j.1469-0691.2007.01925.x

    Article  PubMed  Google Scholar 

  29. Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56(9):2515–2517. https://doi.org/10.1128/iai.56.9.2515-2517.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, Young LR, Mavrodi D, Thomashow L, Lau GW (2009) Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 175(6):2473–2488. https://doi.org/10.2353/ajpath.2009.090166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10(12):599–606. https://doi.org/10.1016/j.molmed.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Lau GW, Hassett DJ, Britigan BE (2005) Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends Microbiol 13(8):389–397. https://doi.org/10.1016/j.tim.2005.05.011

    Article  CAS  PubMed  Google Scholar 

  33. Shellito J, Nelson S, Sorensen RU (1992) Effect of pyocyanine, a pigment of Pseudomonas aeruginosa, on production of reactive nitrogen intermediates by murine alveolar macrophages. Infect Immun 60(9):3913–3915. https://doi.org/10.1128/iai.60.9.3913-3915.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P, Hellewell PG, Whyte MK (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174(6):3643–3649. https://doi.org/10.4049/jimmunol.174.6.3643

    Article  CAS  PubMed  Google Scholar 

  35. Usher LR, Lawson RA, Geary I, Taylor CJ, Bingle CD, Taylor GW, Whyte MK (2002) Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168(4):1861–1868. https://doi.org/10.4049/jimmunol.168.4.1861

    Article  CAS  PubMed  Google Scholar 

  36. Denning GM, Railsback MA, Rasmussen GT, Cox CD, Britigan BE (1998) Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells. Am J Physiol 274(6):L893-900. https://doi.org/10.1152/ajplung.1998.274.6.L893

    Article  CAS  PubMed  Google Scholar 

  37. Hassan HM, Fridovich I (1980) Mechanism of the antibiotic action pyocyanine. J Bacteriol 141(1):156–163. https://doi.org/10.1128/jb.141.1.156-163.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nassif X, Fournier JM, Arondel J, Sansonetti PJ (1989) Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun 57(2):546–552. https://doi.org/10.1128/iai.57.2.546-552.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Starr MP (1986) Edwards and Ewing’s Identification of Enterobacteriaceae. Int J Syst Evol Microbiol 36(4):581–582. https://doi.org/10.1099/00207713-36-4-581

    Article  Google Scholar 

  40. Schaberg DR, Culver DH, Gaynes RP (1991) Major trends in the microbial etiology of nosocomial infection. Am J Med 91(3b):72s–75s. https://doi.org/10.1016/0002-9343(91)90346-y

    Article  CAS  PubMed  Google Scholar 

  41. Brown C, Seidler RJ (1973) Potential pathogens in the environment: Klebsiella pneumoniae, a taxonomic and ecological enigma. Appl Microbiol 25(6):900–904

    Article  CAS  Google Scholar 

  42. Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, Pratt NF, Garlick JS, Watson KM, Pilcher DV, McGloughlin SA, Spelman DW, Jenney AWJ, Holt KE (2017) Gastrointestinal Carriage Is a Major Reservoir of Klebsiella pneumoniae Infection in Intensive Care Patients. Clin Infect Dis 65(2):208–215. https://doi.org/10.1093/cid/cix270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603

    Article  CAS  Google Scholar 

  44. Patro LPP, Rathinavelan T (2019) Targeting the Sugary Armor of Klebsiella Species. Front Cell Infect Microbiol 9:367. https://doi.org/10.3389/fcimb.2019.00367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60(2):740–745. https://doi.org/10.1128/aem.60.2.740-745.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cortés G, Borrell N, de Astorza B, Gómez C, Sauleda J, Albertí S (2002) Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun 70(5):2583–2590. https://doi.org/10.1128/iai.70.5.2583-2590.2002

    Article  PubMed  PubMed Central  Google Scholar 

  47. Evrard B, Balestrino D, Dosgilbert A, Bouya-Gachancard JL, Charbonnel N, Forestier C, Tridon A (2010) Roles of capsule and lipopolysaccharide O antigen in interactions of human monocyte-derived dendritic cells and Klebsiella pneumoniae. Infect Immun 78(1):210–219. https://doi.org/10.1128/iai.00864-09

    Article  CAS  PubMed  Google Scholar 

  48. Williams P, Lambert PA, Brown MR, Jones RJ (1983) The role of the O and K antigens in determining the resistance of Klebsiella aerogenes to serum killing and phagocytosis. J Gen Microbiol 129(7):2181–2191. https://doi.org/10.1099/00221287-129-7-2181

    Article  CAS  PubMed  Google Scholar 

  49. Jensen TS, Opstrup KV, Christiansen G, Rasmussen PV, Thomsen ME, Justesen DL, Schønheyder HC, Lausen M, Birkelund S (2020) Complement mediated Klebsiella pneumoniae capsule changes. Microbes Infect 22(1):19–30. https://doi.org/10.1016/j.micinf.2019.08.003

    Article  PubMed  Google Scholar 

  50. Arakawa Y, Ohta M, Wacharotayankun R, Mori M, Kido N, Ito H, Komatsu T, Sugiyama T, Kato N (1991) Biosynthesis of Klebsiella K2 capsular polysaccharide in Escherichia coli HB101 requires the functions of rmpA and the chromosomal cps gene cluster of the virulent strain Klebsiella pneumoniae Chedid (O1:K2). Infect Immun 59(6):2043–2050. https://doi.org/10.1128/iai.59.6.2043-2050.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arakawa Y, Wacharotayankun R, Nagatsuka T, Ito H, Kato N, Ohta M (1995) Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol 177(7):1788–1796. https://doi.org/10.1128/jb.177.7.1788-1796.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brisse S, Fevre C, Passet V, Issenhuth-Jeanjean S, Tournebize R, Diancourt L, Grimont P (2009) Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS ONE 4(3):e4982. https://doi.org/10.1371/journal.pone.0004982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsay RW, Siu LK, Fung CP, Chang FY (2002) Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med 162(9):1021–1027. https://doi.org/10.1001/archinte.162.9.1021

    Article  PubMed  Google Scholar 

  54. Broberg CA, Palacios M, Miller VL (2014) Klebsiella: a long way to go towards understanding this enigmatic jet-setter. F1000Prime Rep 6:64. https://doi.org/10.12703/p6-64

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hadano Y (2013) String test. BMJ Case Rep 2013. https://doi.org/10.1136/bcr-2012-008328

  56. Yu WL, Ko WC, Cheng KC, Lee HC, Ke DS, Lee CC, Fung CP, Chuang YC (2006) Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 42(10):1351–1358. https://doi.org/10.1086/503420

    Article  CAS  PubMed  Google Scholar 

  57. Walker KA, Treat LP, Sepúlveda VE, Miller VL (2020) The Small Protein RmpD Drives Hypermucoviscosity in Klebsiella pneumoniae. mBio 11(5). https://doi.org/10.1128/mBio.01750-20

  58. Barrett EL, Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51(2):192–205. https://doi.org/10.1128/mr.51.2.192-205.1987

  59. Barbosa-Jefferson VL, Zhao FJ, McGrath SP, Magan N (1998) Thiosulphate and tetrathionate oxidation in arable soils. Soil Biol Biochem 30(5):553–559. https://doi.org/10.1016/S0038-0717(97)00177-6

    Article  CAS  Google Scholar 

  60. Muller L (1923) Un nouveau milieu d’enrichissement pour la recherche du Bacille Typhique at Paratyphique. C R Seances Soc Biol Fil 89:434–437

    Google Scholar 

  61. Knox R, Gell PG, Pollock MR (1943) The selective action of tetrathionate in bacteriological media: A report to the Medical Research Council. J Hyg (Lond) 43(3):147–158. https://doi.org/10.1017/s0022172400012766 (141)

    Article  CAS  Google Scholar 

  62. Smith PB, Rhoden DL, Tomfohrde KM, Dunn CR, Balows A, Hermann GJ (1971) R-B enteric differential system for identification of Enterobacteriaceae. Appl Microbiol 21(6):1036–1039

    Article  CAS  Google Scholar 

  63. Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC (1999) The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32(2):275–287. https://doi.org/10.1046/j.1365-2958.1999.01345.x

    Article  CAS  PubMed  Google Scholar 

  64. Jeffries L (1959) Novobiocin-tetrathionate broth: a medium of improved selectivity for the isolation of Salmonellae from faeces. J Clin Pathol 12(6):568–571. https://doi.org/10.1136/jcp.12.6.568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Baumler AJ (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467(7314):426–429. https://doi.org/10.1038/nature09415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM (2008) Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76(1):403–416. https://doi.org/10.1128/iai.01189-07

    Article  CAS  PubMed  Google Scholar 

  67. Rivera-Chavez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, Xu G, Velazquez EM, Lebrilla CB, Winter SE, Baumler AJ (2016) Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host Microbe 19(4):443–454. https://doi.org/10.1016/j.chom.2016.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pupo GM, Lan R, Reeves PR (2000) Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci U S A 97(19):10567–10572. https://doi.org/10.1073/pnas.180094797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lan R, Alles MC, Donohoe K, Martinez MB, Reeves PR (2004) Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect Immun 72(9):5080–5088. https://doi.org/10.1128/iai.72.9.5080-5088.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21(1):134–156. https://doi.org/10.1128/CMR.00032-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, Tang X, Wang J, Xiong Z, Dong J, Xue Y, Zhu Y, Xu X, Sun L, Chen S, Nie H, Peng J, Xu J, Wang Y, Yuan Z, Wen Y, Yao Z, Shen Y, Qiang B, Hou Y, Yu J, Jin Q (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33(19):6445–6458. https://doi.org/10.1093/nar/gki954

    Article  PubMed  PubMed Central  Google Scholar 

  72. Casalino M, Latella MC, Prosseda G, Colonna B (2003) CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infect Immun 71(10):5472–5479. https://doi.org/10.1128/iai.71.10.5472-5479.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fernandez IM, Silva M, Schuch R, Walker WA, Siber AM, Maurelli AT, McCormick BA (2001) Cadaverine prevents the escape of Shigella flexneri from the phagolysosome: a connection between bacterial dissemination and neutrophil transepithelial signaling. J Infect Dis 184(6):743–753. https://doi.org/10.1086/323035

    Article  CAS  PubMed  Google Scholar 

  74. McCormick BA, Fernandez MI, Siber AM, Maurelli AT (1999) Inhibition of Shigella flexneri-induced transepithelial migration of polymorphonuclear leucocytes by cadaverine. Cell Microbiol 1(2):143–155. https://doi.org/10.1046/j.1462-5822.1999.00014.x

    Article  CAS  PubMed  Google Scholar 

  75. Maurelli AT, Fernández RE, Bloch CA, Rode CK, Fasano A (1998) “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci U S A 95(7):3943–3948. https://doi.org/10.1073/pnas.95.7.3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Day WA Jr, Fernández RE, Maurelli AT (2001) Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect Immun 69(12):7471–7480. https://doi.org/10.1128/IAI.69.12.7471-7480.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kott Y (1962) Lysine decarboxylase activity as a simple test in differentiation of Enterobacteriaceae. Nature 196:90–91. https://doi.org/10.1038/196090b0

    Article  CAS  PubMed  Google Scholar 

  78. Løbersli I, Wester AL, Kristiansen Å, Brandal LT (2016) Molecular Differentiation of Shigella Spp. from Enteroinvasive E. Coli. Eur J Microbiol Immunol 6(3):197–205. https://doi.org/10.1556/1886.2016.00004

    Article  CAS  Google Scholar 

  79. Johnson JG, Kunz LJ, Barron W, Ewing WH (1966) Biochemical Differentiation of the <em>Enterobacteriaceae</em> with the Aid of Lysine-Iron-Agar. Appl Microbiol 14(2):212–217

    Article  CAS  Google Scholar 

  80. Gemski P, Formal SB, Baron LS (1971) Identification of Two Widely Separated Loci Conferring Nicotinic Acid Dependence on Wild-Type Shigella flexneri 2a. Infect Immun 3(3):500–503. https://doi.org/10.1128/IAI.3.3.500-503.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Prunier AL, Schuch R, Fernández RE, Maurelli AT (2007) Genetic structure of the nadA and nadB antivirulence loci in Shigella spp. J Bacteriol 189(17):6482–6486. https://doi.org/10.1128/jb.00525-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prunier A-L, Schuch R, Fernández RE, Mumy KL, Kohler H, McCormick BA, Maurelli AT (2007) nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology 153(7):2363–2372. https://doi.org/10.1099/mic.0.2007/006916-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Savannah J. Taylor for insightful discussion and comments on the manuscript.

Funding

Work in S.E.W.’s lab was funded by the NIH (AI118807, AI128151), The Welch Foundation (I-1969–20180324), the Burroughs Wellcome Fund (1017880), and a Research Scholar Grant (RSG-17–048-01-MPC) from the American Cancer Society.

Work in R.L.S.’s lab was funded by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais, Brazil), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil). RLS has a fellowship from CNPq (Brazil).

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

R.L.S. and S.E.W. conceptualized the manuscript upon invitation from the Editor; L.S. and A.G.J. performed the literature search and critical analysis of the literature; L.S., A.G.J., and S.E.W. drafted the manuscript. All coauthors critically revised the manuscript.

Corresponding author

Correspondence to Sebastian E. Winter.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

S.E.W. is listed as an inventor on patent US10092596B2, which describes a treatment to prevent the inflammation-associated expansion of Enterobacteriaceae. The other authors have no additional financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Waldir P. Elias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiga, L., Jimenez, A.G., Santos, R.L. et al. How microbiological tests reflect bacterial pathogenesis and host adaptation. Braz J Microbiol 52, 1745–1753 (2021). https://doi.org/10.1007/s42770-021-00571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00571-7

Keywords

Navigation