Skip to main content
Log in

Biosynthesis of C12 Fatty Alcohols by Whole Cell Biotransformation of C12 Derivatives Using Escherichia coli Two-cell Systems Expressing CAR and ADH

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, the conversions of 1-dodecanoic, ω-hydroxydodecanoic acid and α,ω-dodecanedioic acid using whole cell biotransformation of Escherichia coli BW25113ΔfadD expressing CAR and ADH enzymes were demonstrated. First 13 CAR enzymes were examined for 1-dodecanoic acid reduction, and CAR encoded by mab4714 from Mycobacterium abscessus showed the highest conversion of 53.1% in single cells of heterologous CAR and endogenous ADH. For a better conversion, the host cells were engineered to simultaneously express Yarrowia lipolytica ADH2 with the GroES/EL-DnaK/J/E chaperone in a single host system. In addition, two-cell system using two strains of E. coli expressing CAR-Sfp and ADH-GroES/EL-DnaK/J/E was also investigated. In results, additional ADH expression was not effective in a single host system, whereas two cell system significantly increased α,ω-dodecanedioic acid conversion by total 71.3%; α,ω-dodecanediol (68.2%) and ω-hydroxydodecanoic acid (3.1%), respectively. Interestingly, the MAB4714 CAR enzyme could converted ω-hydroxydodecanoic acid into α,ω-dodecanediol up to 97.2% conversion in 17 h (12.4 mg/L/h). Finally, structural understanding of the higher activity against ω-hydroxydodecanoic was understood by docking simulations which suggested hydrogen-bonding interactions between ω-hydroxyl group and polar residues such as Gln434 and Thr285 were holding the substrate tightly with more stable positioning in the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gahloth, D., G. A. Aleku, and D. Leys (2020) Carboxylic acid reductase: Structure and mechanism. J. Biotechnol. 307: 107–113.

    Article  CAS  Google Scholar 

  2. Winkler, M. (2018) Carboxylic acid reductase enzymes (CARs). Curr. Opin. Chem. Biol. 43: 23–29.

    Article  CAS  Google Scholar 

  3. Akhtar, M. K., N. J. Turner, and P. R. Jones (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. USA. 110: 87–92.

    Article  CAS  Google Scholar 

  4. Henritzi, S., M. Fischer, M. Grininger, M. Oreb, and E. Boles (2018) An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. Biotechnol. Biofuels. 11: 150.

    Article  Google Scholar 

  5. Ahsan, M. M., H. Jeon, S. P. Nadarajan, T. Chung, H. W. Yoo, B. G. Kim, M. D. Patil, and H. Yun (2018) Biosynthesis of the nylon 12 monomer, omega-aminododecanoic acid with novel CYP153A, AlkJ, and omega-TA enzymes. Biotechnol. J. 13: e1700562.

    Article  Google Scholar 

  6. Kim, K. R. and D. K. Oh (2013) Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol. Adv. 31: 1473–1485.

    Article  CAS  Google Scholar 

  7. Gong, M., Y. Hu, W. Wei, Q. Jin, and X. Wang (2019) Production of conjugated fatty acids: A review of recent advances. Biotechnol. Adv. 37: 107454.

    Article  CAS  Google Scholar 

  8. Diao, J., X. Song, T. Guo, F. Wang, L. Chen, and W. Zhang (2020) Cellular engineering strategies toward sustainable omega-3 long chain polyunsaturated fatty acids production: State of the art and perspectives. Biotechnol. Adv. 40: 107497.

    Article  CAS  Google Scholar 

  9. Mendoza, J., F. Pina, N. Basílio, M. Guimarães, V. de Freitas, and L. Cruz (2018) Extending the stability of red and blue colors of malvidin-3-glucoside-lipophilic derivatives in the presence of SDS micelles. Dyes Pigm. 151: 321–326.

    Article  CAS  Google Scholar 

  10. Ahn, S. Y., M. Choi, D. Jeong, S. Park, H. Park, K. S. Jang, and K. Y. Choi (2019) Synthesis and chemical composition analysis of protocatechualdehyde-based novel melanin dye by 15T FT-ICR: High dyeing performance on soft contact lens. Dyes Pigm. 160: 546–554.

    Article  CAS  Google Scholar 

  11. Li, X. S., J. D. An, H. M. Zhang, J. J. Liu, Y. Li, G. X. Du, X. X. Wu, L. Fei, J. D. Lacoste, Z. Cai, Y. Y. Liu, J. Z. Huo, and B. Ding (2019) Cluster-based CaII, MgII and CdII coordination polymers based on amino-functionalized tri-phenyl tetra-carboxylate: Bifunctional photo-luminescent sensing for Fe3+ and antibiotics. Dyes Pigm. 170: 107631.

    Article  CAS  Google Scholar 

  12. Amara, I., W. Miled, R. Ben Slama, P. Chevallier, D. Mantovani, and N. Ladhari (2019) Surface modifications by plasma treatment, chemical grafting and over dyeing of polyamide nets to improve the antifouling performance in the aquaculture field. Dyes Pigm. 166: 107–113.

    Article  CAS  Google Scholar 

  13. Liu, H., T. Cheng, M. Xian, Y. Cao, F. Fang, and H. Zou (2014) Fatty acid from the renewable sources: A promising feedstock for the production of biofuels and biobased chemicals. Biotechnol. Adv. 32: 382–389.

    Article  CAS  Google Scholar 

  14. Sudheer, P. D. V. N., J. Yun, S. Chauhan, T. J. Kang, and K. Y. Choi (2017) Screening, expression, and characterization of Baeyer-Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid. Biotechnol. Bioprocess Eng. 22: 717–724.

    Article  CAS  Google Scholar 

  15. Sudheer, P. D. V. N., D. Seo, E. J. Kim, S. Chauhan, J. R. Chunawala, and K. Y. Choi (2018) Production of(z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Enzyme Microb. Technol. 119: 45–51.

    Article  CAS  Google Scholar 

  16. Lee, H., C. Han, H. W. Lee, G. Park, W. Jeon, J. Ahn, and H. Lee (2018) Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources. Biotechnol. Biofuels. 11: 310.

    Article  CAS  Google Scholar 

  17. Kim, T. H., S. H. Kang, J. B. Park, and D. K. Oh (2020) Construction of an engineered biocatalyst system for the production of medium-chain alpha, omega-dicarboxylic acids from medium-chain omega-hydroxycarboxylic acids. Biotechnol. Bioeng. 117: 2648–2657.

    Article  CAS  Google Scholar 

  18. Liu, S. C., C. Li, L. Xie, and Z. Cao (2003) Intracellular pH and metabolic activity of long-chain dicarylic acid-producing yeast Candida tropicalis. J. Biosci. Bioeng. 96: 349–353.

    Article  CAS  Google Scholar 

  19. Lee, H., Y. E. C. Sugiharto, S. Lee, G. Park, C. Han, H. Jang, W. Jeon, H. Park, J. Ahn, K. Kang, and H. Lee (2017) Characterization of the newly isolated omega-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production. Appl. Microbiol. Biotechnol. 101: 6333–6342.

    Article  CAS  Google Scholar 

  20. Smit, M. S., M. M. Mokgoro, E. Setati, and J. M. Nicaud (2005) α,ω- Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. Biotechnol. Lett. 27: 859–864.

    Article  CAS  Google Scholar 

  21. Azoulay, E. and Z. Duvnjak (1971) Activation des acides gras à chaîne moyenne et des diacides chez Candida tropicalis. Biochimie. 53: 113–122.

    Article  CAS  Google Scholar 

  22. Ju, J. H., B. R. Oh, S. Y. Heo, Y. U. Lee, J. H. Shon, C. H. Kim, Y. M. Kim, J. W. Seo, and W. K. Hong (2020) Production of adipic acid by short- and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis. Bioprocess Biosyst. Eng. 43: 33–43.

    Article  CAS  Google Scholar 

  23. Sitepu, I. R., L. A. Garay, R. Sestric, D. Levin, D. E. Block, J. B. German, and K. L. Boundy-Mills (2014) Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol. Adv. 32: 1336–1360.

    Article  CAS  Google Scholar 

  24. Park, H. A. and K. Y. Choi (2020) α, ω-Oxyfunctionalization of C12 alkanes via whole-cell biocatalysis of CYP153A from Marinobacter aquaeolei and a new CYP from Nocardia farcinica IFM10152. Biochem. Eng. J. 156: 107524.

    Article  CAS  Google Scholar 

  25. Namgung, S., H. A. Park, J. Kim, P. G. Lee, B. G. Kim, Y. H. Yang, and K. Y. Choi (2019) Ecofriendly one-pot biosynthesis of indigo derivative dyes using CYP102G4 and PrnA halogenase. Dyes Pigm. 162: 80–88.

    Article  CAS  Google Scholar 

  26. Khusnutdinova, A. N., R. Flick, A. Popovic, G. Brown, A. Tchigvintsev, B. Nocek, K. Correia, J. C. Joo, R. Mahadevan, and A. F. Yakunin (2017) Exploring bacterial carboxylate reductases for the reduction of bifunctional carboxylic acids. Biotechnol. J. 12: 1600751.

    Article  Google Scholar 

  27. Fedorchuk, T. P., A. N. Khusnutdinova, R. Flick, and A. F. Yakunin (2019) Site-directed mutagenesis and stability of the carboxylic acid reductase MAB4714 from Mycobacterium abscessus. J. Biotechnol. 303: 72–79.

    Article  CAS  Google Scholar 

  28. Horvat, M., G. Fiume, S. Fritsche, and M. Winkler (2019) Discovery of carboxylic acid reductase (CAR) from Thermothelomyces thermophila and its evaluation for vanillin synthesis. J. Biotechnol. 304: 44–51.

    Article  CAS  Google Scholar 

  29. Johnson, J., Y. H. Yang, D. G. Lee, J. J. Yoon, and K. Y. Choi (2018) Expression, purification and characterization of halophilic protease Pph_Pro1 cloned from Pseudoalteromonas phenolica. Protein Expr. Purif. 152: 46–55.

    Article  CAS  Google Scholar 

  30. Sung, C., E. Jung, K. Y. Choi, J. H. Bae, M. Kim, J. Kim, E. J. Kim, P. I. Kim, and B. G. Kim (2015) The production of omegahydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli. Appl. Microbiol. Biotechnol. 99: 6667–6676.

    Article  CAS  Google Scholar 

  31. He, A., T. Li, L. Daniels, I. Fotheringham, and J. P. N. Rosazza (2004) Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl. Environ. Microbiol. 70: 1874–1881.

    Article  CAS  Google Scholar 

  32. Gahloth, D., M. S. Dunstan, D. Quaglia, E. Klumbys, M. P. Lockhart-Cairns, A. M. Hill, S. R. Derrington, N. S. Scrutton, N. J. Turner, and D. Leys (2017) Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat. Chem. Biol. 13: 975–981.

    Article  CAS  Google Scholar 

  33. Taylor, R. G., D. C. Walker, and R. R. Mcinnes (1993) E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res. 21: 1677–1678.

    Article  CAS  Google Scholar 

  34. Datsenko, K. A. and B. L. Wanner (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97: 6640–6645.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development program (No. 20002734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Young Choi.

Ethics declarations

The authors declare no commercial or financial conflict of interest.

Neither ethical approval nor informed consent were required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, TY., Yong, Y., Park, H. et al. Biosynthesis of C12 Fatty Alcohols by Whole Cell Biotransformation of C12 Derivatives Using Escherichia coli Two-cell Systems Expressing CAR and ADH. Biotechnol Bioproc E 26, 392–401 (2021). https://doi.org/10.1007/s12257-020-0239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0239-7

Keywords

Navigation