Skip to main content
Log in

Deep eutectic solvents in the pretreatment of feedstock for efficient fractionation of polysaccharides: current status and future prospects

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The effective and efficient valorization of polysaccharide-rich feedstocks is undisputedly a key factor in the quest for a more sustainable planet and a biobased economy. Several covalent and non-covalent interactions within the biomacromolecules define the complex, intricate, and rigid structure of lignocellulose and related biomasses. However, none of the current methods to disrupt the complex interactions of feedstocks and enhance their hydrolysis for subsequent valorization are highly selective and efficient enough, hence the need for new methodologies in this respect. Deep eutectic solvents (DES) are special types of ionic liquids, which are cheaper, less toxic, and more biocompatible than other ionic liquids. They have been identified as important green solvents and functional fluids with immense potential for catalytic transformation of polysaccharide-rich biomass into a diverse range of products. The unique properties of DES enable them to effectively dissolve and convert biomass into valuable end products. This review paper sheds light on the application of DES in the deconstruction and fractionation of different feedstocks, particularly in the pretreatment step. In this regard, it covers the recent advancements in the applications of various DES in the valorization of biomass and its major components (i.e., cellulose, xylan, chitin, starch, pectin) with special emphasis on the relationship between the inherent properties of DES and their dissolution potential. Focus is also placed on the toxicity, biocompatibility, and reusability of DES. Finally, this article addresses the current and potential issues in the industrial application of DES, with a special focus on future opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khandelwal S, Tailor YK, Kumar M (2016) Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq 215:345–386. https://doi.org/10.1016/j.molliq.2015.12.015

    Article  Google Scholar 

  2. Perna FM, Vitale P, Capriati V (2020) Deep eutectic solvents and their applications as green solvents. Curr Opin Green Sustain Chem 21:27–33. https://doi.org/10.1016/j.cogsc.2019.09.004

    Article  Google Scholar 

  3. Abbott AP, Capper G, Davies DL et al. (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun:70–71.  https://doi.org/10.1039/B210714G

  4. Durand E, Lecomte J, Villeneuve P (2016) From green chemistry to nature: the versatile role of low transition temperature mixtures. Biochimie 120:119–123. https://doi.org/10.1016/j.biochi.2015.09.019

    Article  Google Scholar 

  5. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  Google Scholar 

  6. Scheffler T, Thomson M (1990) Seventh international conference on molten salts. In: The Electrochemical Society Montreal, Quebec, Canada.

  7. Gano ZS, Mjalli FS, Al-Wahaibi T et al (2015) The novel application of hydrated metal halide (SnCl2. 2H2O)-based deep eutectic solvent for the extractive desulfurization of liquid fuels. Int J Chem Eng Appl 6:367–371. https://doi.org/10.7763/IJCEA.2015.V6.511

    Article  Google Scholar 

  8. Zhang C, Chen T, Zhang H et al. (2019) Hydrated‐metal‐halide‐based deep‐eutectic‐solvent‐mediated NiFe layered double hydroxide: an excellent electrocatalyst for urea electrolysis and water splitting. Chemistry–An Asian J 14:2995–3002. https://doi.org/10.1002/asia.201900742

  9. Skulcova A, Russ A, Jablonsky M et al (2018) The pH behavior of seventeen deep eutectic solvents. BioResources 13:5042–5051

    Google Scholar 

  10. Al-Murshedi AYM, Al-Yasari A, Alesary HF et al (2020) Electrochemical fabrication of cobalt films in a choline chloride–ethylene glycol deep eutectic solvent containing water. Chem Pap 74:699–709. https://doi.org/10.1007/s11696-019-01025-z

    Article  Google Scholar 

  11. Pena-Pereira F, Namieśnik J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. Chemsuschem 7:1784–1800. https://doi.org/10.1002/cssc.201301192

    Article  Google Scholar 

  12. Lima F, Branco LC, Silvestre AJD et al (2021) Deep desulfurization of fuels: are deep eutectic solvents the alternative for ionic liquids? Fuel 293:120297. https://doi.org/10.1016/j.fuel.2021.120297

    Article  Google Scholar 

  13. Florindo C, Lima F, Ribeiro BD et al (2019) Deep eutectic solvents: overcoming 21st century challenges. Curr Opin Green Sustain Chem 18:31–36. https://doi.org/10.1016/j.cogsc.2018.12.003

    Article  Google Scholar 

  14. Van Osch DJ, Parmentier D, Dietz CH et al (2016) Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem Commun 52:11987–11990. https://doi.org/10.1039/C6CC06105B

    Article  Google Scholar 

  15. Tan J-N, Dou Y (2020) Deep eutectic solvents for biocatalytic transformations: focused lipase-catalyzed organic reactions. Appl Microbiol Biotechnol 104:1481–1496. https://doi.org/10.1007/s00253-019-10342-y

    Article  Google Scholar 

  16. Juneidi I, Hayyan M, Hashim MA (2018) Intensification of biotransformations using deep eutectic solvents: overview and outlook. Process Biochem 66:33–60. https://doi.org/10.1016/j.procbio.2017.12.003

    Article  Google Scholar 

  17. Sharma G, Sequeira RA, Pereira MM et al (2021) Are ionic liquids and deep eutectic solvents the same?: fundamental investigation from DNA dissolution point of view. J Mol Liq 328:115386. https://doi.org/10.1016/j.molliq.2021.115386

    Article  Google Scholar 

  18. Tran KT, Le LT, Phan AL et al (2020) New deep eutectic solvents based on ethylene glycol-LiTFSI and their application as an electrolyte in electrochemical double layer capacitor (EDLC). J Mol Liq 320:114495. https://doi.org/10.1016/j.molliq.2020.114495

    Article  Google Scholar 

  19. Navarro-Suárez A, Johansson P (2020) Perspective—semi-solid electrolytes based on deep eutectic solvents: opportunities and future directions. J Electrochem Soc 167:070511. https://doi.org/10.1149/1945-7111/ab68d3

    Article  Google Scholar 

  20. Karimi MB, Mohammadi F, Hooshyari K (2020) Potential use of deep eutectic solvents (DESs) to enhance anhydrous proton conductivity of Nafion 115® membrane for fuel cell applications. J Membr Sci 611:118217. https://doi.org/10.1016/j.memsci.2020.118217

    Article  Google Scholar 

  21. Kadapure SA, Kadapure P, Savadatti A et al (2020) Experimental investigation on biodiesel production incorporating deep eutectic solvents. Proceedings of the Institution of Civil Engineers-Energy 173:150–156. https://doi.org/10.1680/jener.18.00027

    Article  Google Scholar 

  22. Khan N, Park SH, Kadima L et al (2021) Locally sustainable biodiesel production from waste cooking oil and grease using a deep eutectic solvent: characterization, thermal properties, and blend performance. ACS Omega 6:9204–9212. https://doi.org/10.1021/acsomega.1c00556

    Article  Google Scholar 

  23. Suopajärvi T, Ricci P, Karvonen V et al (2020) Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Ind Crops Prod 145:111956. https://doi.org/10.1016/j.indcrop.2019.111956

    Article  Google Scholar 

  24. Ruesgas-RamóN M, Figueroa-Espinoza MC, Durand E (2017) Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J Agric Food Chem 65:3591–3601. https://doi.org/10.1021/acs.jafc.7b01054

    Article  Google Scholar 

  25. Wang H, Li J, Zeng X et al (2020) Extraction of cellulose nanocrystals using a recyclable deep eutectic solvent. Cellulose 27:1301–1314. https://doi.org/10.1007/s10570-019-02867-2

    Article  Google Scholar 

  26. Tian D, Chandra RP, Lee J-S et al (2017) A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuels 10:157. https://doi.org/10.1186/s13068-017-0846-5

    Article  Google Scholar 

  27. Morais ES, Mendonça PV, Coelho JF et al (2018) Deep eutectic solvent aqueous solutions as efficient media for the solubilization of hardwood xylans. Chemsuschem 11:753–762. https://doi.org/10.1002/cssc.201702007

    Article  Google Scholar 

  28. Li P, Zhang Q, Zhang X et al (2019) Subcellular dissolution of xylan and lignin for enhancing enzymatic hydrolysis of microwave assisted deep eutectic solvent pretreated Pinus bungeana Zucc. Biores Technol 288:121475. https://doi.org/10.1016/j.biortech.2019.121475

    Article  Google Scholar 

  29. Kumar V, Dangi AK, Shukla P (2018) Engineering thermostable microbial xylanases toward its industrial applications. Mol Biotechnol 60(3):226–235. https://doi.org/10.1007/s12033-018-0059-6

    Article  Google Scholar 

  30. Özel N, Elibol MA (2021) Review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. Carbohyd Polym 262:117942. https://doi.org/10.1016/j.carbpol.2021.117942

    Article  Google Scholar 

  31. Alam MA, Muhammad G, Khan MN et al (2021) Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J Clean Prod 309:127445. https://doi.org/10.1016/j.jclepro.2021.127445

    Article  Google Scholar 

  32. Chen Z, Ragauskas A, Wan C (2020) Lignin extraction and upgrading using deep eutectic solvents. Ind Crops Prod 147:112241. https://doi.org/10.1016/j.indcrop.2020.112241

    Article  Google Scholar 

  33. Lemaoui T, Darwish AS, Hammoudi NEH et al (2020) Prediction of electrical conductivity of deep eutectic solvents using COSMO-RS sigma profiles as molecular descriptors: a quantitative structure–property relationship study. Ind Eng Chem Res 59:13343–13354. https://doi.org/10.1021/acs.iecr.0c02542

    Article  Google Scholar 

  34. Su H-Z, Yin J-M, Liu Q-S et al (2015) Properties of four deep eutectic solvents: density, electrical conductivity, dynamic viscosity and refractive index. Acta Phys Chim Sin 31:1468–1473. https://doi.org/10.3866/PKU.WHXB201506111

    Article  Google Scholar 

  35. Ibrahim RK, Hayyan M, Alsaadi MA et al (2019) Physical properties of ethylene glycol-based deep eutectic solvents. J Mol Liq 276:794–800. https://doi.org/10.1016/j.molliq.2018.12.032

    Article  Google Scholar 

  36. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. John Wiley & Sons

    Google Scholar 

  37. Craveiro R, Aroso I, Flammia V et al (2016) Properties and thermal behavior of natural deep eutectic solvents. J Mol Liq 215:534–540. https://doi.org/10.1016/j.molliq.2016.01.038

    Article  Google Scholar 

  38. Zhang Q, Vigier KDO, Royer S et al (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146. https://doi.org/10.1039/C2CS35178A

    Article  Google Scholar 

  39. Ge X, Gu C, Wang X et al (2017) Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. J Mater Chem A 5:8209–8229. https://doi.org/10.1039/C7TA01659J

    Article  Google Scholar 

  40. Zhao B-Y, Xu P, Yang F-X et al (2015) Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica. ACS ACS Sustain Chem Eng 3:2746–2755. https://doi.org/10.1021/acssuschemeng.5b00619

    Article  Google Scholar 

  41. Liu Y, Friesen JB, Mcalpine JB et al (2018) Natural deep eutectic solvents: properties, applications, and perspectives. J Nat Prod 81:679–690. https://doi.org/10.1021/acs.jnatprod.7b00945

    Article  Google Scholar 

  42. Cui Y, Li C, Yin J et al (2017) Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride. J Mol Liq 236:338–343. https://doi.org/10.1016/j.molliq.2017.04.052

    Article  Google Scholar 

  43. Sangoro J, Iacob C, Serghei A et al (2009) Universal scaling of charge transport in glass-forming ionic liquids. Phys Chem Chem Phys 11:913–916. https://doi.org/10.1039/B816106B

    Article  Google Scholar 

  44. Makoś P, Słupek E, Gębicki J (2020) Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – experimental and theoretical studies. J Mol Liq 308:113101. https://doi.org/10.1016/j.molliq.2020.113101

    Article  Google Scholar 

  45. Haghbakhsh R, Bardool R, Bakhtyari A et al (2019) Simple and global correlation for the densities of deep eutectic solvents. J Mol Liq 296:111830. https://doi.org/10.1016/j.molliq.2019.111830

    Article  Google Scholar 

  46. Shahbaz K, Bagh FSG, Mjalli FS et al (2013) Prediction of refractive index and density of deep eutectic solvents using atomic contributions. Fluid Phase Equilib 354:304–311. https://doi.org/10.1016/j.fluid.2013.06.050

    Article  Google Scholar 

  47. Garcia G, Aparicio S, Ullah R et al (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644. https://doi.org/10.1021/ef5028873

    Article  Google Scholar 

  48. Shahbaz K, Mjalli F, Hashim M et al (2011) Prediction of deep eutectic solvents densities at different temperatures. Thermochim Acta 515:67–72. https://doi.org/10.1016/j.tca.2010.12.022

    Article  Google Scholar 

  49. Naseem Z, Shehzad RA, Ihsan A et al (2021) Theoretical investigation of supramolecular hydrogen-bonded choline chloride-based deep eutectic solvents using density functional theory. Chem Phys Lett 769:138427. https://doi.org/10.1016/j.cplett.2021.138427

    Article  Google Scholar 

  50. Alomar MK, Hayyan M, Alsaadi MA et al (2016) Glycerol-based deep eutectic solvents: physical properties. J Mol Liq 215:98–103. https://doi.org/10.1016/j.molliq.2015.11.032

    Article  Google Scholar 

  51. Carriazo D, Serrano MC, Gutiérrez MC et al (2012) Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev 41:4996–5014. https://doi.org/10.1039/C2CS15353J

    Article  Google Scholar 

  52. Wazeer I, Hayyan M, Hadj-Kali MK (2018) Deep eutectic solvents: designer fluids for chemical processes. J Chem Technol Biotechnol 93:945–958. https://doi.org/10.1002/jctb.5491

    Article  Google Scholar 

  53. Abbott AP, Capper G, Gray S (2006) Design of improved deep eutectic solvents using hole theory. Chem Phys Chem 7:803–806. https://doi.org/10.1002/cphc.200500489

    Article  Google Scholar 

  54. Durand E, Lecomte J, Villeneuve P (2013) Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions. Eur J Lipid Sci Technol 115:379–385. https://doi.org/10.1002/ejlt.201200416

    Article  Google Scholar 

  55. Tang B, Row KH (2013) Recent developments in deep eutectic solvents in chemical sciences. Monatshefte für Chemie-Chemical Monthly 144:1427–1454. https://doi.org/10.1007/s00706-013-1050-3

    Article  Google Scholar 

  56. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. John Wiley & Sons

    Google Scholar 

  57. Florindo C, Mcintosh A, Welton T et al (2018) A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. Phys Chem Chem Phys 20:206–213. https://doi.org/10.1039/C7CP06471C

    Article  Google Scholar 

  58. Pandey A, Rai R, Pal M et al (2014) How polar are choline chloride-based deep eutectic solvents? Phys Chem Chem Phys 16:1559–1568. https://doi.org/10.1039/C3CP53456A

    Article  Google Scholar 

  59. Chen W, Bai X, Xue Z et al (2019) The formation and physicochemical properties of PEGylated deep eutectic solvents. New J Chem 43:8804–8810. https://doi.org/10.1039/C9NJ02196E

    Article  Google Scholar 

  60. Gabriele F, Chiarini M, Germani R et al (2019) Effect of water addition on choline chloride/glycol deep eutectic solvents: characterization of their structural and physicochemical properties. J Mol Liq 291:111301. https://doi.org/10.1016/j.molliq.2019.111301

    Article  Google Scholar 

  61. Xu M, Ran L, Chen N et al (2019) Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem 297:124970. https://doi.org/10.1016/j.foodchem.2019.124970

    Article  Google Scholar 

  62. Lindberg D, De La Fuente RM, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147:169–171. https://doi.org/10.1016/j.jbiotec.2010.04.011

    Article  Google Scholar 

  63. Makoś P, Słupek E, Gębicki J (2020) Hydrophobic deep eutectic solvents in microextraction techniques–a review. Microchem J 152:104384. https://doi.org/10.1016/j.microc.2019.104384

    Article  Google Scholar 

  64. Ghaedi H, Ayoub M, Sufian S et al (2017) The study on temperature dependence of viscosity and surface tension of several phosphonium-based deep eutectic solvents. J Mol Liq 241:500–510. https://doi.org/10.1016/j.molliq.2017.06.024

    Article  Google Scholar 

  65. Hayyan A, Mjalli FS, Alnashef IM et al (2012) Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim Acta 541:70–75. https://doi.org/10.1016/j.tca.2012.04.030

    Article  Google Scholar 

  66. Hayyan A, Mjalli FS, Alnashef IM et al (2013) Glucose-based deep eutectic solvents: physical properties. J Mol Liq 178:137–141. https://doi.org/10.1016/j.molliq.2012.11.025

    Article  Google Scholar 

  67. Chen Y, Chen W, Fu L et al (2019) Surface tension of 50 deep eutectic solvents: effect of hydrogen-bonding donors, hydrogen-bonding acceptors, other solvents, and temperature. Ind Eng Chem Res 58:12741–12750. https://doi.org/10.1021/acs.iecr.9b00867

    Article  Google Scholar 

  68. Shahbaz K, Mjalli F, Hashim M et al (2012) Prediction of the surface tension of deep eutectic solvents. Fluid Phase Equilib 319:48–54. https://doi.org/10.1016/j.fluid.2012.01.025

    Article  Google Scholar 

  69. Xu P, Zheng G-W, Zong M-H et al (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresources and Bioprocessing 4:34. https://doi.org/10.1186/s40643-017-0165-5

    Article  Google Scholar 

  70. Al-Dawsari JN, Bessadok-Jemai A, Wazeer I et al (2020) Fitting of experimental viscosity to temperature data for deep eutectic solvents. J Mol Liq 310:113127. https://doi.org/10.1016/j.molliq.2020.113127

    Article  Google Scholar 

  71. Haghbakhsh R, Taherzadeh M, Duarte ARC et al (2020) A general model for the surface tensions of deep eutectic solvents. J Mol Liq 307:112972. https://doi.org/10.1016/j.molliq.2020.112972

    Article  Google Scholar 

  72. Yang Z (2019) Toxicity and biodegradability of deep eutectic solvents and natural deep eutectic solvents. Deep eutectic solvents: synthesis, properties, and applications 1:43–60. https://doi.org/10.1002/9783527818488.ch3

    Article  Google Scholar 

  73. Hayyan M, Mbous YP, Looi CY et al (2016) Natural deep eutectic solvents: cytotoxic profile. Springerplus 5:913. https://doi.org/10.1186/s40064-016-2575-9

    Article  Google Scholar 

  74. Modica-Napolitano JS, Aprille JR (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49:63–70. https://doi.org/10.1016/S0169-409X(01)00125-9

    Article  Google Scholar 

  75. Hayyan M, Looi CY, Hayyan A et al (2015) In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS ONE 10:e0117934. https://doi.org/10.1371/journal.pone.0117934

    Article  Google Scholar 

  76. Juneidi I, Hayyan M, Hashim MA (2015) Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC Adv 5:83636–83647. https://doi.org/10.1039/C5RA12425E

    Article  Google Scholar 

  77. Mirza NR, Nicholas NJ, Wu Y et al (2015) Experiments and thermodynamic modeling of the solubility of carbon dioxide in three different deep eutectic solvents (DESs). J Chem Eng Data 60:3246–3252. https://doi.org/10.1021/acs.jced.5b00492

    Article  Google Scholar 

  78. Sarmad S, Xie Y, Mikkola J-P et al (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 41:290–301. https://doi.org/10.1039/C6NJ03140D

    Article  Google Scholar 

  79. Hayyan M, Hashim MA, Hayyan A et al (2013) Are deep eutectic solvents benign or toxic? Chemosphere 90:2193–2195. https://doi.org/10.1016/j.chemosphere.2012.11.004

    Article  Google Scholar 

  80. de Morais P, Gonçalves F, Coutinho JA et al (2015) Ecotoxicity of cholinium-based deep eutectic solvents. ACS Sustainable Chemistry & Engineering 3(12):3398–3404. https://doi.org/10.1021/acssuschemeng.5b01124

    Article  Google Scholar 

  81. Torregrosa-Crespo J, Marset X, Guillena G et al (2020) New guidelines for testing “Deep eutectic solvents” toxicity and their effects on the environment and living beings. Sci Total Environ 704:135382. https://doi.org/10.1016/j.scitotenv.2019.135382

    Article  Google Scholar 

  82. Yu Q, Qin L, Liu Y et al (2019) In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. Biores Technol 271:210–217. https://doi.org/10.1016/j.biortech.2018.09.056

    Article  Google Scholar 

  83. Rodríguez-Juan E, López S, Abia R et al (2021) Antimicrobial activity on phytopathogenic bacteria and yeast, cytotoxicity and solubilizing capacity of deep eutectic solvents. J Mol Liq 337:116343. https://doi.org/10.1016/j.molliq.2021.116343

    Article  Google Scholar 

  84. Xu F, Sun J, Wehrs M et al (2018) Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol. ACS Sustain Chem Eng 6:8914–8919. https://doi.org/10.1021/acssuschemeng.8b01271

    Article  Google Scholar 

  85. Juneidi I, Hayyan M, Ali OM (2016) Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ Sci Pollut Res 23:7648–7659. https://doi.org/10.1007/s11356-015-6003-4

    Article  Google Scholar 

  86. Radošević K, Bubalo MC, Srček VG et al (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf 112:46–53. https://doi.org/10.1016/j.ecoenv.2014.09.034

    Article  Google Scholar 

  87. Wen Q, Chen J-X, Tang Y-L et al (2015) Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132:63–69. https://doi.org/10.1016/j.chemosphere.2015.02.061

    Article  Google Scholar 

  88. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311. https://doi.org/10.1016/j.ymeth.2004.03.021

    Article  Google Scholar 

  89. Ramón DJ, Guillena G (2020) Deep eutectic solvents: synthesis, properties, and applications. John Wiley & Sons, New Jersey

    Google Scholar 

  90. Hayyan M, Hashim MA, Al-Saadi MA et al (2013) Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere 93:455–459. https://doi.org/10.1016/j.chemosphere.2013.05.013

    Article  Google Scholar 

  91. Křížek T, Bursová M, Horsley R et al (2018) Menthol-based hydrophobic deep eutectic solvents: towards greener and efficient extraction of phytocannabinoids. J Clean Prod 193:391–396. https://doi.org/10.1016/j.jclepro.2018.05.080

    Article  Google Scholar 

  92. Gouveia W, Jorge T, Martins S et al (2014) Toxicity of ionic liquids prepared from biomaterials. Chemosphere 104:51–56. https://doi.org/10.1016/j.chemosphere.2013.10.055

    Article  Google Scholar 

  93. Kudłak B, Owczarek K, Namieśnik J (2015) Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ Sci Pollut Res 22:11975–11992. https://doi.org/10.1007/s11356-015-4794-y

    Article  Google Scholar 

  94. Woiciechowski AL, Neto CJD, De Souza Vandenberghe LP et al (2020) Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance–conventional processing and recent advances. Biores Technol 304:122848. https://doi.org/10.1016/j.biortech.2020.122848

    Article  Google Scholar 

  95. Xu F, Sun J, Konda NM et al (2016) Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ Sci 9:1042–1049. https://doi.org/10.1039/C5EE02940F

    Article  Google Scholar 

  96. AaM E, Hayyan M, Hayyan A et al (2020) A grand avenue to integrate deep eutectic solvents into biomass processing. Biomass Bioenerg 137:105550. https://doi.org/10.1016/j.biombioe.2020.105550

    Article  Google Scholar 

  97. Asakawa A, Kohara M, Sasaki C et al (2015) Comparison of choline acetate ionic liquid pretreatment with various pretreatments for enhancing the enzymatic saccharification of sugarcane bagasse. Ind Crops Prod 71:147–152. https://doi.org/10.1016/j.indcrop.2015.03.073

    Article  Google Scholar 

  98. Hou X-D, Feng G-J, Ye M et al (2017) Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Biores Technol 238:139–146. https://doi.org/10.1016/j.biortech.2017.04.027

    Article  Google Scholar 

  99. Chen L, Yang Y-Y, Zhou R-R et al (2021) The extraction of phenolic acids and polysaccharides from Lilium lancifolium Thunb. using a deep eutectic solvent. Anal Methods 13:1226–1231. https://doi.org/10.1039/D0AY02352C

    Article  Google Scholar 

  100. Jablonský M, Šima J (2020) Phytomass valorization by deep eutectic solvents—achievements, perspectives, and limitations. Curr Comput-Aided Drug Des 10:800. https://doi.org/10.3390/cryst10090800

    Article  Google Scholar 

  101. Gertrudes A, Craveiro R, Eltayari Z et al (2017) How do animals survive extreme temperature amplitudes? The role of natural deep eutectic solvents. ACS Sustain Chem Eng 5:9542–9553. https://doi.org/10.1021/acssuschemeng.7b01707

    Article  Google Scholar 

  102. Bubalo MC, Mazur M, Radošević K et al (2015) Baker’s yeast-mediated asymmetric reduction of ethyl 3-oxobutanoate in deep eutectic solvents. Process Biochem 50:1788–1792. https://doi.org/10.1016/j.procbio.2015.07.015

    Article  Google Scholar 

  103. Procentese A, Johnson E, Orr V et al (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Biores Technol 192:31–36. https://doi.org/10.1016/j.biortech.2015.05.053

    Article  Google Scholar 

  104. Alvarez-Vasco C, Ma R, Quintero M et al (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141. https://doi.org/10.1039/C6GC01007E

    Article  Google Scholar 

  105. Vitale P, Abbinante VM, Perna FM et al (2017) Unveiling the hidden performance of whole cells in the asymmetric bioreduction of aryl-containing ketones in aqueous deep eutectic solvents. Adv Synth Catal 359:1049–1057. https://doi.org/10.1002/adsc.201601064

    Article  Google Scholar 

  106. Mao S, Li K, Hou Y et al (2018) Synergistic effects of components in deep eutectic solvents relieve toxicity and improve the performance of steroid biotransformation catalyzed by Arthrobacter simplex. J Chem Technol Biotechnol 93:2729–2736. https://doi.org/10.1002/jctb.5629

    Article  Google Scholar 

  107. Vitale P, Perna FM, Agrimi G et al (2018) Whole-cell biocatalyst for chemoenzymatic total synthesis of rivastigmine. Catalysts 8:55. https://doi.org/10.3390/catal8020055

    Article  Google Scholar 

  108. AaN G, Arbain D, Nashef EM et al (2015) Applicability evaluation of deep eutectic solvents–cellulase system for lignocellulose hydrolysis. Biores Technol 181:297–302. https://doi.org/10.1016/j.biortech.2015.01.057

    Article  Google Scholar 

  109. Wahlström R, Hiltunen J, Sirkka MPDSN et al (2016) Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose: effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis. RSC Adv 6:68100–68110. https://doi.org/10.1039/C6RA11719H

    Article  Google Scholar 

  110. Kumar S, Kayastha AM (2010) Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids. J Enzyme Inhib Med Chem 25:646–652. https://doi.org/10.3109/14756360903468155

    Article  Google Scholar 

  111. Infanzón-Rodríguez M, Ragazzo-Sánchez J, Del Moral S et al (2020) Optimization of cellulase production by Aspergillus niger ITV 02 from sweet Sorghum bagasse in submerged culture using a Box-Behnken design. Sugar Tech 22:266–273. https://doi.org/10.1007/s12355-019-00765-2

    Article  Google Scholar 

  112. Bautista EG, Gutierrez E, Dupuy N et al (2019) Pre-treatment of a sugarcane bagasse-based substrate prior to saccharification: effect of coffee pulp and urea on laccase and cellulase activities of Pycnoporus sanguineus. J Environ Manage 239:178–186. https://doi.org/10.1016/j.jenvman.2019.03.033

    Article  Google Scholar 

  113. Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun:1235–1237. https://doi.org/10.1039/B716317G

  114. Okuofu SI, Bhagwat P, Gerrano AS et al (2021) Simultaneous saccharification and bioethanol production from underutilized biomass, cowpea haulm using co-cultures of Saccharomyces cerevisiae (BY4743) and Scheffersomyces stipitis (PsY633). Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01368-2

    Article  Google Scholar 

  115. Kumar K, Arumugam N, Permaul K et al. (2016) Thermostable enzymes and their industrial applications. In: Shukla P (ed) Microbial Biotechnology: An Interdisciplinary Approach CRC Press, Florida, pp 115–162.

  116. Zdanowicz M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing. A review Carbohydrate Polymers 200:361–380. https://doi.org/10.1016/j.carbpol.2018.07.078

    Article  Google Scholar 

  117. Chen Y-L, Zhang X, You T-T et al (2019) Deep eutectic solvents (DESs) for cellulose dissolution: a mini-review. Cellulose 26:205–213. https://doi.org/10.1007/s10570-018-2130-7

    Article  Google Scholar 

  118. Xu H, Peng J, Kong Y et al. (2020) Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: a review. Bioresource Tech 123416. https://doi.org/10.1016/j.biortech.2020.123416

  119. Arumugam N, Biely P, Puchart V et al (2019) Xylan from bambara and cowpea biomass and their structural elucidation. Int J Biol Macromol 132:987–993. https://doi.org/10.1016/j.ijbiomac.2019.04.030

    Article  Google Scholar 

  120. Amobonye A, Bhagwat P, Singh S et al (2021) Enhanced xylanase and endoglucanase production from Beauveria bassiana SAN01, an entomopathogenic fungal endophyte. Fungal Biol 125:39–48. https://doi.org/10.1016/j.funbio.2020.10.003

    Article  Google Scholar 

  121. Ye H, Zhang Y, Yu Z et al (2018) Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer. Constr Build Mater 173:10–16. https://doi.org/10.1016/j.conbuildmat.2018.04.028

    Article  Google Scholar 

  122. Dugoni GC, Mezzetta A, Guazzelli L et al (2020) Purification of Kraft cellulose under mild conditions using choline acetate based deep eutectic solvents. Green Chem 22:8680–8691. https://doi.org/10.1039/D0GC03375H

    Article  Google Scholar 

  123. Kumar AK, Parikh BS, Shah E et al (2016) Cellulosic ethanol production from green solvent-pretreated rice straw. Biocatal Agric Biotechnol 7:14–23. https://doi.org/10.1016/j.bcab.2016.04.008

    Article  Google Scholar 

  124. Xu G-C, Ding J-C, Han R-Z et al (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Biores Technol 203:364–369. https://doi.org/10.1016/j.biortech.2015.11.002

    Article  Google Scholar 

  125. Tian D, Guo Y, Hu J et al (2020) Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int J Biol Macromol 142:288–297. https://doi.org/10.1016/j.ijbiomac.2019.09.100

    Article  Google Scholar 

  126. Okuofu SI, Gerrano AS, Singh S et al (2020) Deep eutectic solvent pretreatment of Bambara groundnut haulm for enhanced saccharification and bioethanol production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01053-w

    Article  Google Scholar 

  127. Zulkefli S, Abdulmalek E, Rahman MBA (2017) Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renewable Energy 107:36–41. https://doi.org/10.1016/j.renene.2017.01.037

    Article  Google Scholar 

  128. Zhang C-W, Xia S-Q, Ma P-S (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Biores Technol 219:1–5. https://doi.org/10.1016/j.biortech.2016.07.026

    Article  Google Scholar 

  129. Hou X-D, Li A-L, Lin K-P et al (2018) Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Biores Technol 249:261–267. https://doi.org/10.1016/j.biortech.2017.10.019

    Article  Google Scholar 

  130. Fang C, Thomsen MH, Frankær CG et al (2017) Reviving pretreatment effectiveness of deep eutectic solvents on lignocellulosic date palm residues by prior recalcitrance reduction. Ind Eng Chem Res 56:3167–3174. https://doi.org/10.1021/acs.iecr.6b04733

    Article  Google Scholar 

  131. Thi S, Lee KM (2019) Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): cellulose digestibility, structural and morphology changes. Biores Technol 282:525–529. https://doi.org/10.1016/j.biortech.2019.03.065

    Article  Google Scholar 

  132. Li A-L, Hou X-D, Lin K-P et al (2018) Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. J Biosci Bioeng 126:346–354. https://doi.org/10.1016/j.jbiosc.2018.03.011

    Article  Google Scholar 

  133. Mamilla JL, Novak U, Grilc M et al (2019) Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass Bioenerg 120:417–425. https://doi.org/10.1016/j.biombioe.2018.12.002

    Article  Google Scholar 

  134. Ling Z, Guo Z, Huang C et al (2020) Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility. Biores Technol 305:123025. https://doi.org/10.1016/j.biortech.2020.123025

    Article  Google Scholar 

  135. Ling Z, Tang W, Su Y et al (2021) Promoting enzymatic hydrolysis of aggregated bamboo crystalline cellulose by fast microwave-assisted dicarboxylic acid deep eutectic solvents pretreatments. Biores Technol 333:125122. https://doi.org/10.1016/j.biortech.2021.125122

    Article  Google Scholar 

  136. NaM N, WaW M, Hassan O (2016) Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production. Procedia Chemistry 18:147–154. https://doi.org/10.1016/j.proche.2016.01.023

    Article  Google Scholar 

  137. Pan M, Zhao G, Ding C et al (2017) Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohyd Polym 176:307–314. https://doi.org/10.1016/j.carbpol.2017.08.088

    Article  Google Scholar 

  138. Lun LW, Gunny AaN, Kasim FH et al. (2017) Fourier transform infrared spectroscopy (FTIR) analysis of paddy straw pulp treated using deep eutectic solvent. In: AIP Conference Proceedings. AIP Publishing LLC, 1835:020049. https://doi.org/10.1063/1.4981871

  139. Lynam JG, Kumar N, Wong MJ (2017) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Biores Technol 238:684–689. https://doi.org/10.1016/j.biortech.2017.04.079

    Article  Google Scholar 

  140. Isci A, Thieme N, Lamp A et al (2021) Production of xylo-oligosaccharides from wheat straw using microwave assisted deep eutectic solvent pretreatment. Ind Crops Prod 164:113393. https://doi.org/10.1016/j.indcrop.2021.113393

    Article  Google Scholar 

  141. Liu Y, Chen W, Xia Q et al (2017) Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. Chemsuschem 10:1692–1700. https://doi.org/10.1002/cssc.201601795

    Article  Google Scholar 

  142. Huang Z-J, Feng G-J, Lin K-P et al (2020) Significant boost in xylose yield and enhanced economic value with one-pot process using deep eutectic solvent for the pretreatment and saccharification of rice straw. Ind Crops Prod 152:112515. https://doi.org/10.1016/j.indcrop.2020.112515

    Article  Google Scholar 

  143. Lee CBTL, Wu TY, Ting CH et al (2019) One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Biores Technol 278:486–489. https://doi.org/10.1016/j.biortech.2018.12.034

    Article  Google Scholar 

  144. Zhang LX, Yu H, Yu HB et al (2014) Conversion of xylose and xylan into furfural in biorenewable choline chloride–oxalic acid deep eutectic solvent with the addition of metal chloride. Chin Chem Lett 25:1132–1136. https://doi.org/10.1016/j.cclet.2014.03.029

    Article  Google Scholar 

  145. Amobonye A, Bhagwat P, Pandey A et al (2020) Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Crit Rev Biotechnol 40:1019–1034. https://doi.org/10.1080/07388551.2020.1805403

    Article  Google Scholar 

  146. Bhagwat P, Amobonye A, Singh S et al (2021) A comparative analysis of GH18 chitinases and their isoforms from Beauveria bassiana: an in-silico approach. Process Biochem 100:207–216. https://doi.org/10.1016/j.procbio.2020.10.012

    Article  Google Scholar 

  147. Zhou P, Li J, Yan T et al (2019) Selectivity of deproteinization and demineralization using natural deep eutectic solvents for production of insect chitin (Hermetia illucens). Carbohyd Polym 225:115255. https://doi.org/10.1016/j.carbpol.2019.115255

    Article  Google Scholar 

  148. Kim H, Kang S, Li K et al (2021) Preparation and characterization of various chitin-glucan complexes derived from white button mushroom using a deep eutectic solvent-based ecofriendly method. Int J Biol Macromol 169:122–129. https://doi.org/10.1016/j.ijbiomac.2020.12.081

    Article  Google Scholar 

  149. Zhao D, Huang W-C, Guo N et al (2019) Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polymers 11:409. https://doi.org/10.3390/polym11030409

    Article  Google Scholar 

  150. Saravana PS, Ho TC, Chae S-J et al (2018) Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohyd Polym 195:622–630. https://doi.org/10.1016/j.carbpol.2018.05.018

    Article  Google Scholar 

  151. Feng M, Lu X, Zhang J et al (2019) Direct conversion of shrimp shells to O-acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chem 21:87–98. https://doi.org/10.1039/C8GC02506A

    Article  Google Scholar 

  152. Bradić B, Novak U, Likozar B (2020) Crustacean shell bio-refining to chitin by natural deep eutectic solvents. Green Processing and Synthesis 9:13–25. https://doi.org/10.1515/gps-2020-0002

    Article  Google Scholar 

  153. Zhu P, Gu Z, Hong S et al (2017) One-pot production of chitin with high purity from lobster shells using choline chloride–malonic acid deep eutectic solvent. Carbohyd Polym 177:217–223. https://doi.org/10.1016/j.carbpol.2017.09.001

    Article  Google Scholar 

  154. Hong S, Yuan Y, Yang Q et al (2018) Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohyd Polym 201:211–217. https://doi.org/10.1016/j.carbpol.2018.08.059

    Article  Google Scholar 

  155. Huang W-C, Zhao D, Guo N et al (2018) Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. J Agric Food Chem 66:11897–11901. https://doi.org/10.1021/acs.jafc.8b03847

    Article  Google Scholar 

  156. Francisco M, Van Den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157. https://doi.org/10.1039/C2GC35660K

    Article  Google Scholar 

  157. Biswas A, Shogren R, Stevenson D et al (2006) Ionic liquids as solvents for biopolymers: acylation of starch and zein protein. Carbohyd Polym 66:546–550. https://doi.org/10.1016/j.carbpol.2006.04.005

    Article  Google Scholar 

  158. Zdanowicz M, Spychaj T (2011) Ionic liquids as starch plasticizers or solvents. Polimery 56:861

    Article  Google Scholar 

  159. Zdanowicz M, Spychaj T, Mąka H (2016) Imidazole-based deep eutectic solvents for starch dissolution and plasticization. Carbohyd Polym 140:416–423. https://doi.org/10.1016/j.carbpol.2015.12.036

    Article  Google Scholar 

  160. Yiin CL, Quitain AT, Yusup S et al (2016) Characterization of natural low transition temperature mixtures (LTTMs): green solvents for biomass delignification. Biores Technol 199:258–264. https://doi.org/10.1016/j.biortech.2015.07.103

    Article  Google Scholar 

  161. Chen M, Lahaye M (2021) Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocolloids 115:106601. https://doi.org/10.1016/j.foodhyd.2021.106601

    Article  Google Scholar 

  162. Benvenutti L, Del Pilar S-C, AaF Z et al (2020) NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product: in silico and experimental approaches for solvent selection. J Mol Liq 315:113761. https://doi.org/10.1016/j.molliq.2020.113761

    Article  Google Scholar 

  163. Elgharbawy AA, Hayyan A, Hayyan M et al (2019) Natural deep eutectic solvent-assisted pectin extraction from pomelo peel using sonoreactor: experimental optimization approach. Processes 7:416. https://doi.org/10.3390/pr7070416

    Article  Google Scholar 

  164. Shafie MH, Yusof R, Gan C-Y (2019) Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: optimization and characterization studies. Carbohyd Polym 216:303–311. https://doi.org/10.1016/j.carbpol.2019.04.007

    Article  Google Scholar 

  165. Liew SQ, Ngoh GC, Yusoff R et al (2018) Acid and deep eutectic solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatal Agric Biotechnol 13:1–11. https://doi.org/10.1016/j.bcab.2017.11.001

    Article  Google Scholar 

  166. Roy JK, Arumugam N, Ranjan B et al. (2021) An overview of raw starch digesting enzymes and their applications in biofuel development In: Thatoi H., Mohapatra S., Das S.K. (eds) Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-33-4195-1_3

  167. Das AK, Sharma M, Mondal D et al (2016) Deep eutectic solvents as efficient solvent system for the extraction of κ-carrageenan from Kappaphycus alvarezii. Carbohyd Polym 136:930–935. https://doi.org/10.1016/j.carbpol.2015.09.114

    Article  Google Scholar 

  168. Gao C, Cai C, Liu J et al (2020) Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents. Food Chemistry 313:126164. https://doi.org/10.1016/j.foodchem.2020.126164

    Article  Google Scholar 

  169. Saravana PS, Cho Y-N, Woo H-C et al (2018) Green and efficient extraction of polysaccharides from brown seaweed by adding deep eutectic solvent in subcritical water hydrolysis. J Clean Prod 198:1474–1484. https://doi.org/10.1016/j.jclepro.2018.07.151

    Article  Google Scholar 

  170. Nie J, Chen D, Lu Y (2020) Deep eutectic solvents based ultrasonic extraction of polysaccharides from edible brown seaweed Sargassum horneri. J Mar Sci Eng 8:440. https://doi.org/10.3390/jmse8060440

    Article  Google Scholar 

  171. Liang J, Zeng Y, Wang H et al (2019) Extraction, purification and antioxidant activity of novel polysaccharides from Dendrobium officinale by deep eutectic solvents. Nat Prod Res 33:3248–3253. https://doi.org/10.1080/14786419.2018.1471480

    Article  Google Scholar 

  172. Shang X-C, Chu D, Zhang J-X et al (2021) Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep Purif Technol 259:118169. https://doi.org/10.1016/j.seppur.2020.118169

    Article  Google Scholar 

  173. Zhang L, Wang M (2017) Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Int J Biol Macromol 95:675–681. https://doi.org/10.1016/j.ijbiomac.2016.11.096

    Article  Google Scholar 

  174. Zhang W, Cheng S, Zhai X et al. (2020) Green and efficient extraction of polysaccharides from Poria cocos FA Wolf by deep eutectic solvent. Natural Product Communications 15:1934578X19900708. https://doi.org/10.1177/1934578X19900708

  175. Cai C, Wang Y, Yu W et al (2020) Temperature-responsive deep eutectic solvents as green and recyclable media for the efficient extraction of polysaccharides from Ganoderma lucidum. J Clean Prod 274:123047. https://doi.org/10.1016/j.jclepro.2020.123047

    Article  Google Scholar 

  176. Radhakrishnan R, Patra P, Das M et al (2021) Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals. Renew Sustain Energy Rev 149:111368. https://doi.org/10.1016/j.rser.2021.111368

    Article  Google Scholar 

  177. Liu P, Hao J-W, Mo L-P et al (2015) Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv 5:48675–48704. https://doi.org/10.1039/C5RA05746A

    Article  Google Scholar 

  178. Jeong KM, Lee MS, Nam MW et al (2015) Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J Chromatogr A 1424:10–17. https://doi.org/10.1016/j.chroma.2015.10.083

    Article  Google Scholar 

  179. Satlewal A, Agrawal R, Bhagia S et al (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36:2032–2050. https://doi.org/10.1016/j.biotechadv.2018.08.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Prashant Bhagwat, conceptualization, investigation, formal analysis, and writing — original draft; Ayodeji Amobonye, investigation, formal analysis, and writing — original draft; Suren Singh, resources, supervision, and writing — review and editing; Santhosh Pillai, resources, supervision, writing — review and editing, and funding acquisition.

Corresponding author

Correspondence to Santhosh Pillai.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagwat, P., Amobonye, A., Singh, S. et al. Deep eutectic solvents in the pretreatment of feedstock for efficient fractionation of polysaccharides: current status and future prospects. Biomass Conv. Bioref. 12 (Suppl 1), 171–195 (2022). https://doi.org/10.1007/s13399-021-01745-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01745-x

Keywords

Navigation