Skip to main content

Advertisement

Log in

Bioenergy recovery from Southern Tunisia’s organic wastes: analysis and kinetic modeling study of biomethane production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Tunisia, like many other countries in the world, suffers from a shortage of conventional energy resources. Further, it exhibits large and increasing volumes of organic wastes that cause environmental and health problems. In this study, the considered wastes consist of the organic fraction of municipal solid wastes (OFMSW), the olive mill wastewater (OMWW), and the chicken wastes (CW). These bio-wastes can therefore be valorized by a biological process such as the anaerobic digestion to satisfy on the one hand the energy demands and on the other hand, to reduce the environmental problems. Accordingly, the first aim of this work is to investigate the biomethane potential of the mentioned bio-wastes and to assess the energetic content of the obtained biomethane production. Secondly, a theoretical analysis is conducted by using the Buswell equation to predict the biomethane generation and to determine the biodegradability of the studied substrates mixture. Finally, the experimental findings are used to carry out a kinetic study, by using four kinetic models to assess their suitability to fit the present anaerobic digestion process. To do this, the biomethane potential estimation of these biomasses, under mesophilic conditions, is carried out at a laboratory scale by using the biochemical methane potential (BMP) tests. These testes are performed under an optimal substrate-to-inoculums ratio and a controlled temperature during the testing period at a laboratory scale. The experimental results show that the net yield of the biomethane from the studied bio-wastes mixture is equal to 0.384 Nm3/kg VS, which is equivalent to 130.29 Nm3 of biomethane, extracted from one ton of these bio-wastes mixture. The theoretical and the experimental results of the net produced biomethane show that the substrates mixture biodegradability is found equal to 66.89%. The studied kinetic models show good agreements with the experimental results, with a correlation coefficient R2 ≥ 95. It is found that the Gompertz model is the best one for predicting the anaerobic digestion process, due to the lowest root mean square prediction estimate (RMSPE) coefficient, as compared with the other studied kinetic models.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Araujo VKA, Almeida S, Oliveira SB, Calixto WP, Furriel GP, Barbosa DP (2017) Anaerobic digestion using residue of soybean processing: biogas production and it is potential to generate energy. IEEE 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, pp. 1–4. doi: https://doi.org/10.1109/EPE.2017.7967345.

  2. Madsen M, Holm NJB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sust Energ Rev 15(6):3141–3155. https://doi.org/10.1016/j.rser.2011.04.026

    Article  Google Scholar 

  3. Available online: https://www.reeep.org/tunisia-2012 (accessed on 15 May 2021).

  4. Available online: http://www.anged.nat.tn/accueil.html (accessed on 15 May 2021).

  5. Bacenetti J, Negri M, Fiala M, González-García S (2013) Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci Total Environ 463–464:541–551. https://doi.org/10.1016/j.scitotenv.2013.06.058

    Article  Google Scholar 

  6. Ali JMA, Mohan S, Velayutham T, Sankaran S (2016) Comparative study of biogas production from municipal solid waste using different inoculum concentration on batch anaerobic digestion. Asian J Eng Technol 04(04):7

    Google Scholar 

  7. Alrawashdeh KAB, Gul E, Yang Q, Yang H, Bartocci P, Fantozzi F (2020) Effect of heavy metals in the performance of anaerobic digestion of olive mill waste. Processes 8(9):1146. https://doi.org/10.3390/pr8091146

    Article  Google Scholar 

  8. El Gnaouia Y, Sounnib F, Bakraouia M, Karouacha F, Benlemlihb M, El Bari H (2020) Anaerobic co-digestion assessment of olive mill wastewater and food waste: effect of mixture ratio on methane production and process stability. J Environ Chem Eng 8(4):103874. https://doi.org/10.1016/j.jece.2020.103874

    Article  Google Scholar 

  9. Tou I, Igoud S, Touzi A (2001) Production de Biométhane à Partir des Déjections Animales, Rev. Energ. Ren. : Production et Valorisation – Biomasse, 103-108).

  10. Mouftahi M, Tlili N, Hidouri N, Bartocci P, Alrawashdeh KAB, Gul E, Liberti F, Fantozzi F (2020) Biomethanation potential (BMP) study of mesophilic anaerobic co-digestion of abundant bio-wastes in southern regions of Tunisia. Processes 9(1):48. https://doi.org/10.3390/pr9010048

    Article  Google Scholar 

  11. Mouftahi M, Tlili N, Hidouri N, Bartocci P, Liberti F, Fantozzi F (2020) Bio-methanisation potential (BMP) test for organic waste available in the south region of Tunisia. IEEE 11th International Renewable Energy Congress (IREC), Hammamet, Tunisia, pp. 1–5. doi: https://doi.org/10.1109/IREC48820.2020.9310433.

  12. Li Y, Jin Y, Borrion A, Li J (2018) Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste. Waste Manag 73:156–164. https://doi.org/10.1016/j.wasman.2017.12.027

    Article  Google Scholar 

  13. Yee VF, Chew TL, Jiri JK (2017) The update of anaerobic digestion and the environment impact assessments research. Chem Eng Trans 57:7–12. https://doi.org/10.3303/CET1757002

    Article  Google Scholar 

  14. Deepanraj B, Sivasubramanian V, Jayaraj S (2015) Experimental and kinetic study on anaerobic digestion of food waste: the effect of total solids and pH. J Renew Sustain Energy 7(6):063104. https://doi.org/10.1063/1.4935559

    Article  Google Scholar 

  15. Adiga S, Ramya R, Shankar BB, Patil JH, Geetha CR (2012) Kinetics of anaerobic digestion of water hyacinth, poultry litter, cow manure and primary sludge: a comparative study. 2nd International Conference on Biotechnology and Environment Management. Int Proc Chem Biol Environ Eng 43:73–78. https://doi.org/10.7763/IPCBEE

    Article  Google Scholar 

  16. Patil JH, Raj MA, Muralidhara PL, Desai SM, Raju GKM (2012) Kinetics of anaerobic digestion of water hyacinth using poultry litter as inoculum. International Journal of Environmental Science and Development, pp. 94–98. doi: https://doi.org/10.7763/IJESD.2012.V3.195.

  17. Kafle GK, Kim SH, Shin BS (2012) Anaerobic digestion treatment for the mixture of Chinese cabbage waste juice and swine manure. J Biosyst Eng 37(1):58–64. https://doi.org/10.5307/JBE.2012.37.1.058

    Article  Google Scholar 

  18. Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102(3):2255–2264. https://doi.org/10.1016/j.biortech.2010.10.035

    Article  Google Scholar 

  19. Kafle GK, Kim SH (2012) Kinetic study of the anaerobic digestion of swine manure at mesophilic temperature: a lab scale batch operation. J Biosyst Eng 37(4):233–244. https://doi.org/10.5307/JBE.2012.37.4.233

    Article  Google Scholar 

  20. Kafle GK, Chen L (2016) Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag 48:492–502. https://doi.org/10.1016/j.wasman.2015.10.021

    Article  Google Scholar 

  21. Loa HM, Kurniawan TA, Sillanpää MET, Pai TY, Chiang CF, Chao KP, Liu MH, Chuang SH, Banks CJ, Wang SC (2010) Modelling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresour Technol 101(16):6329–6335. https://doi.org/10.1016/j.biortech.2010.03.048

    Article  Google Scholar 

  22. Li C, Champagne P, Anderson BC (2011) Evaluating and modelling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresour Technol 102(20):9471–9480. https://doi.org/10.1016/j.biortech.2011.07.103

    Article  Google Scholar 

  23. Li P, Li W, Sun M, Xu X, Zhang B, Sun Y (2018) Evaluation of biochemical methane potential and kinetics on the anaerobic digestion of vegetable crop residues. Energies 12(1):26. https://doi.org/10.3390/en12010026

    Article  Google Scholar 

  24. Veluchamy C, Kalamdhad AS (2017) Enhanced methane production and its kinetics model of thermally pretreated lignocellulose waste material. Bioresour Technol 241:1–9. https://doi.org/10.1016/j.biortech.2017.05.068

    Article  Google Scholar 

  25. Zahan Z, Othman MZ, Muster TH (2018) Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: a comparative batch study for C/N optimisation. Waste Manag 71:663–674. https://doi.org/10.1016/j.wasman.2017.08.014

    Article  Google Scholar 

  26. Pramanik SK, Fatihah BS, Mojtaba P, Biplob KP (2019) Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes 7(9):600. https://doi.org/10.3390/pr7090600

    Article  Google Scholar 

  27. El Mashad HM (2013) Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresour Technol 132:305–312. https://doi.org/10.1016/j.biortech.2012.12.183

    Article  Google Scholar 

  28. Ugwu SN, Enweremadu CC (2019) Biodegradability and kinetic studies on biomethane production from okra (Abelmoschus esculentus) waste. S Afr J Sci 115(7/8). https://doi.org/10.17159/sajs.2019/5595

  29. Gong L, Xiaoqi Y, Zaizhao W, Jun Z, Xiaogang Y (2019) Impact of hydrothermal pre-treatment on the anaerobic digestion of different solid–liquid ratio sludges and kinetic analysis. RSC Adv 9(33):19104–19113. https://doi.org/10.1039/C9RA01662G

    Article  Google Scholar 

  30. Prajapati KK, Pareek N, Vivekanand V (2018) Pretreatment and multi-feed anaerobic co-digestion of agro-industrial residual biomass for improved biomethanation and kinetic analysis. Front Energy Res 6:111. https://doi.org/10.3389/fenrg.2018.00111

    Article  Google Scholar 

  31. Bhutskyi P, Duc P, Anatoliy MK, Steven C, Edward JB, Michael JB (2018) Synergistic co digestion of wastewater grown algae-bacteria polyculture biomass and cellulose to optimize carbon-to-nitrogen ratio and application of kinetic models to predict anaerobic digestion energy balance. Bioresour Technol 269:210–220. https://doi.org/10.1016/j.biortech.2018.08.085

    Article  Google Scholar 

  32. Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. in Methods in Enzymology. Elsevier, pp. 327–351. doi: https://doi.org/10.1016/B978-0-12-385112-3.00016-0.

  33. Rodriguez LM, Dahl OP (2014) Effect of inoculum to substrate ratio on the methane potential of microcrystalline cellulose production wastewater. BioResources 10(1):898–911. https://doi.org/10.15376/biores.10.1.898-911

    Article  Google Scholar 

  34. Jingura RM, Kamusoko R (2017) Methods for determination of biomethane potential of feedstocks: a review. Biofuel Res J 4(2):573–586. https://doi.org/10.18331/BRJ2017.4.2.3

    Article  Google Scholar 

  35. Zhao T, Chen Y, Yu Q, Shi D, Chai H (2019) Enhancement of performance and stability of anaerobic co-digestion of waste activated sludge and kitchen waste by using bentonite. PLoS ONE. Edited by R. Nerenberg 14(7):e0218856. https://doi.org/10.1371/journal.pone.0218856

    Article  Google Scholar 

  36. El Beshbishy E, Nakhla G, Hafez H (2012) Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source. Bioresour Technol 110:18–25. https://doi.org/10.1016/j.biortech.2012.01.025

    Article  Google Scholar 

  37. Achinas S, Euverink GJW (2016) Theoretical analysis of biogas potential prediction from agricultural waste. Resour-Efficient Technol 2(3):143–147. https://doi.org/10.1016/j.reffit.2016.08.001

    Article  Google Scholar 

  38. Curry N, Pillay P (2012) Biogas prediction and design of a food waste to energy system for the urban environment. Renew Energy 41:200–209. https://doi.org/10.1016/j.renene.2011.10.019

    Article  Google Scholar 

  39. Zhang J, Wang Q, Zheng P, Wang Y (2014) Anaerobic digestion of food waste stabilized by lime mud from papermaking process. Bioresour Technol 170:270–277. https://doi.org/10.1016/j.biortech.2014.08.003

    Article  Google Scholar 

  40. Mancini G, Papirio S, Lens PNL, Esposito G (2018) Increased biogas production from wheat straw by chemical pretreatments. Renew Energy 119:608–614. https://doi.org/10.1016/j.renene.2017.12.045

    Article  Google Scholar 

  41. Yan H, Zhao C, Zhang J, Zhang R, Xue CH (2017) Study on biomethane production and biodegradability of different leafy vegetables in anaerobic digestion. AMB Express 7(1):27. https://doi.org/10.1186/s13568-017-0325-1

    Article  Google Scholar 

  42. Parra BA, Donoso A, Torres P (2017) Digestión anaerobia de residuos de alimentos. Predicción de la producción de metano mediante la comparación de modelos cinéticos. Ing Compet 19(1):210. https://doi.org/10.25100/iyc.v19i1.2145

    Article  Google Scholar 

  43. Donoso A, Pérez SI, Fdz-Polanco F (2010) Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem Eng J 160(2):607–614. https://doi.org/10.1016/j.cej.2010.03.082

    Article  Google Scholar 

  44. OShea R, Wall D, Murphy JD (2016) Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times. Bioresour Technol 216:238–249. https://doi.org/10.1016/j.biortech.2016.05.050

    Article  Google Scholar 

  45. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934. https://doi.org/10.2166/wst.2009.040

    Article  Google Scholar 

  46. Bakraoui M, Karouach F, Ouhammou B, Lahboubi N, Gnaoui YE, Aggour M, Bari HE (2020) Kinetics study of methane production from anaerobic digestion of sludge and wastewater recycled pulp and paper. Materials Science and Engineering, p. 13.

  47. Zhu J (2017) Development of general Gompertz models and their simplified two-parameter forms based on specific microbial growth rate for microbial growth, bio-products and substrate consumption. Adv Biotechnol Microbiol 4(3). https://doi.org/10.19080/AIBM.2017.04.555640

  48. Tian Y, Yang K, Zheng L, Han X, Xu Y (2019) Modelling biogas production kinetics of various heavy metals exposed anaerobic fermentation process using sigmoidal growth functions. Waste Biomass Valor 11:4837–4848. https://doi.org/10.1007/s12649-019-00810-x

    Article  Google Scholar 

  49. Pitt RE, Cross TL, Pell AN, Schofield P, Doane PH (1999) Use of in vitro gas production models in ruminal kinetics. Math Biosci 159(2):145–163. https://doi.org/10.1016/S0025-5564(99)00020-6

    Article  MATH  Google Scholar 

  50. Wang F, Pei M, Qiu L, Yao Y, Zhang C (2019) Performance of anaerobic digestion of chicken manure under gradually elevated organic loading rates. Int J Environ Res Public Health 16(12):2239. https://doi.org/10.3390/ijerph16122239

    Article  Google Scholar 

  51. Blika S, Stamatelatou K, Kornaros M (2009) Lyberatos G (2009) Anaerobic digestion of olive mill wastewater. Global NEST J 11(3):364–372

    Google Scholar 

  52. Liberti F, Pistolesi V, Mouftahi M, Hidouri N, Bartocci P, Massoli S, Zampilli M, Fantozzi F (2019) An incubation system to enhance biogas and methane production: a case study of an existing biogas plant in Umbria, Italy. Processes 7(12):925. https://doi.org/10.3390/pr7120925

    Article  Google Scholar 

  53. Mawaheb M, Nejib H, Nawel T, Ammar BB (2019) Experimental study of biomethane production from organic discharges. IEEE 10th International Renewable Energy Congress (IREC), Sousse, Tunisia:, pp. 1–4. doi: https://doi.org/10.1109/IREC.2019.8754591.

  54. Sri Bala Kameswari K, Chitra K, Porselvam S, Thanasekaran K (2012) Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Techn Environ Policy 14(2):241–250. https://doi.org/10.1007/s10098-011-0391-z

    Article  Google Scholar 

  55. Hajji A, Rhachi M, Garoum M, Laaroussi N (2016) The effects of pH, temperature and agitation on biogas production under mesophilic regime. IEEE 3rd International Conference on Renewable Energies for Developing Countries (REDEC), Zouk Mosbeh, Lebanon, pp. 1–4. doi: https://doi.org/10.1109/REDEC.2016.7577510.

  56. Filer J, Ding HH, Chang S (2019) Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water 11(5):921. https://doi.org/10.3390/w11050921

    Article  Google Scholar 

  57. Pecorini I, Olivieri T, Bacchi D, Paradisi A, Corti A, Carnevale E (2012) Evaluation of gas production in a industrial anaerobic digester by means of biochemical methane potential of organic municipal solid waste components. Proceedings of ECOS 2012 - the 25th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, Perugia, Italy, p. 12.

  58. Fantozzi F, Buratti C (2011) Anaerobic digestion of mechanically treated OFMSW: experimental data on biogas/methane production and residues characterization. Bioresour Technol 102(19):8885–8892. https://doi.org/10.1016/j.biortech.2011.06.077

    Article  Google Scholar 

  59. Fantozzi F, Pistolesi V, Massoli S, Pugliese A, Bidini G (2015) Anaerobic digestion of spoiled milk in batch reactors: technical and economic feasibility. Energy Procedia 81:309–318. https://doi.org/10.1016/j.egypro.2015.12.101

    Article  Google Scholar 

  60. Buratti C, Fantozzi F (2015) Thermogravimetric analysis of the behaviour of sub-bituminous coal and cellulosic ethanol residue during co-combustion. Bioresour Technol 186:154–162. https://doi.org/10.1016/j.biortech.2015.03.041

    Article  Google Scholar 

  61. European Committee for Standardization. CEN/TS 14774. Methods for determination of moisture content—oven fry method—part 3: moisture in the analysis sample; European Committee for Standardization: Brussels, Belgium, 2015.

  62. European Committee for Standardization. CEN/TS 14775. Method for the determination of ash content; European Committee for Standardization: Brussels, Belgium, 2004.

  63. European Committee for Standardization. CEN/TS 15148. Solid biofuels—method for the determination of the content of volatile matter; European Committee for Standardization: Brussels, Belgium, 2015.

  64. European Committee for Standardization. CEN/TS 15104. Solid biofuels. Determination of total content of carbon, hydrogen and nitrogen—instrumental methods; European Committee for Standardization: Brussels, Belgium, 2001.

  65. Caillet H, Lebon E, Akinlabi E, Madyira D, Adelard L (2019) Influence of inoculum to substrate ratio on methane production in biochemical methane potential (BMP) tests of sugarcane distillery waste water. Proc Manuf 35:259–264. https://doi.org/10.1016/j.promfg.2019.05.037

    Article  Google Scholar 

  66. Nazaitulshila R, Idris A, Harun R, Wan Azlina WAKG (2015) The influence of inoculum to substrate ratio on the biochemical methane potential of fat, oil, and grease in batch anaerobic assays. Energy Sources, Part A: Recov Util Environ Effects 37(6):590–597. https://doi.org/10.1080/15567036.2014.907374

    Article  Google Scholar 

  67. Wang X, Lu X, Li F, Yang G (2014) Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PLoS ONE 9(5):e97265. https://doi.org/10.1371/journal.pone.0097265

  68. Wellinger A, Murphy J, Baxter D (2013) The biogas handbook. Woodhead Publish Limited. https://doi.org/10.1533/9780857097415

  69. Mohamed MA, Nourou D, Boudy B, Mamoudou N (2018) Theoretical models for prediction of methane production from anaerobic digestion: a critical review. Int J Phys Sci 13(13):206–216. https://doi.org/10.5897/IJPS2018.4740

    Article  Google Scholar 

  70. Liu C, Tong Q, Li Y, Wang N, Liu B, Zhang X (2019) Biogas production and metal passivation analysis during anaerobic digestion of pig manure: effects of a magnetic Fe3O4/FA composite supplement. RSC Adv 9(8):4488–4498. https://doi.org/10.1039/C8RA09451A

    Article  Google Scholar 

  71. Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112(5):867–920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867)

    Article  Google Scholar 

  72. Remigi EU, Buckley CA (2006) Co-digestion of high strength/toxic organic effluents in anaerobic digesters at wastewater treatment works. Water Research Commission, Pretoria

  73. Chen XY, Hoang VT, Antonio AR, Denis R, Serge k (2015) Membrane gas separation technologies for biogas upgrading. RSC Adv, 5(31), pp. 24399–24448. doi: https://doi.org/10.1039/C5RA00666J.

  74. Patrick OS (2015) Biogas, biomethanation, biomass, banana’s wastes, peach palm’s wastes, anaerobic digestion, environmental susteinability. Am J Environ Eng:11. https://doi.org/10.5923/j.ajee.20150504.01

  75. Teferra DM, Wubu W (2018) Biogas for clean energy. Anaerobic Digest. https://doi.org/10.5772/intechopen.79534

  76. Kenneth W (1977) Thermodynamics, 3rd edn. McGraw-Hill Book Company

  77. Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valor 8(2):267–283. https://doi.org/10.1007/s12649-016-9826-4

    Article  Google Scholar 

  78. Roati C, Fiore S, Ruffino B, Marchese F, Novarino D (2012) Preliminary evaluation of the potential biogas production of food-processing industrial wastes. Am J Environ Sci 8(3):291–296. https://doi.org/10.3844/ajessp.2012.291.296

    Article  Google Scholar 

  79. El Asri O, Afilal ME (2018) Comparison of the experimental and theoretical production of biogas by monosaccharides, disaccharides, and amino acids. Int J Environ Sci Technol 15(9):1957–1966. https://doi.org/10.1007/s13762-017-1570-1

    Article  Google Scholar 

  80. Baraza X, Sáez NC, Torres CR (2019) Anaerobic biodegradability of leachate from MSW intermediate landfill. Afinidad 76(585)

  81. Soto M, Méndez R, Lema JM (1991) Biodegradability and toxicity in the anaerobic treatment of fish canning wastewaters. Environ Technol 12(8):669–677. https://doi.org/10.1080/09593339109385055

    Article  Google Scholar 

  82. Ulusoy Y, Ulukardesler AH (2017) Biogas production potential of olive-mill wastes in Turkey. IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA: IEEE, pp. 664–668. doi: https://doi.org/10.1109/ICRERA.2017.8191143.

  83. Cheong DY, Harvey JT, Kim J, Lee C (2019) Improving biomethanation of chicken manure by co-digestion with ethanol plant effluent. Int J Environ Res Public Health 16(24):5023. https://doi.org/10.3390/ijerph16245023

    Article  Google Scholar 

  84. Stan C, Collaguazo G, Streche C, Apostol T, Cocarta D (2018) Pilot-scale anaerobic co-digestion of the OFMSW: improving biogas production and startup. Sustainability 10(6):1939. https://doi.org/10.3390/su10061939

    Article  Google Scholar 

  85. Iqbal Syaichurrozi B, Sumardiono S (2014) Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified Gompertz model and first order kinetic model. Res J Appl Sci Eng Technol 7(13):2798–2805. https://doi.org/10.19026/rjaset.7.602

    Article  Google Scholar 

  86. Mao C, Zhang T, Wang X, Feng Y, Ren G (2017) Process performance and methane production optimizing of anaerobic co-digestion of swine manure and corn straw. Sci Rep 7(1):9379. https://doi.org/10.1038/s41598-017-09977-6

    Article  Google Scholar 

  87. Debik E, Coskun T (2009) Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modelling. Bioresour Technol 100(11):2777–2782. https://doi.org/10.1016/j.biortech.2008.12.058

    Article  Google Scholar 

  88. Miron Y (2000) The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res 34(5):1705–1713. https://doi.org/10.1016/S0043-1354(99)00280-8

    Article  Google Scholar 

  89. Li Y, Jin Y, Li H, Borrion A, Yu Z, Li J (2018) Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste. Appl Energy 213:136–147. https://doi.org/10.1016/j.apenergy.2018.01.033

    Article  Google Scholar 

  90. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28(6):939–951. https://doi.org/10.1016/j.wasman.2007.03.028

    Article  Google Scholar 

  91. Sun C, Cao W, Liu R (2015) Kinetics of methane production from swine manure and buffalo manure. Appl Biochem Biotechnol 177(4):985–995. https://doi.org/10.1007/s12010-015-1792-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their very great appreciations to the biogas station members in Umbria region (Italy), for their fruitful helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mawaheb Mouftahi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouftahi, M., Tlili, N., Hidouri, N. et al. Bioenergy recovery from Southern Tunisia’s organic wastes: analysis and kinetic modeling study of biomethane production. Biomass Conv. Bioref. 13, 6345–6361 (2023). https://doi.org/10.1007/s13399-021-01684-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01684-7

Keywords

Navigation