Skip to main content

Advertisement

Log in

Future changes in the distribution of two non-indigenous orchids and their acquired enemy in Puerto Rico

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Establishment of new populations is contingent on overcoming abiotic and biotic barriers. While this applies to all species, these hurdles are at the forefront of invasion biology where prediction, prevention, eradication, and control strategies depend on an understanding of these processes. Terrestrial Arundina graminifolia and epiphytic Dendrobium crumenatum are two non-indigenous orchids spreading throughout Puerto Rico. The two species have acquired a native herbivore and seed predator, the orchid-specialist weevil, Stethobaris polita. With recently acquired presence records of the three species, land cover data and downscaled climate variables, we modeled their potential distributions under current conditions and also those projected under the least and most extreme climate scenarios for 2050 and 2070. We show that D. crumenatum flourishes in urban environments which also provide refugia from S. polita, whereas there is currently limited refugia for A. graminifolia from S. polita attack, as this orchid has similar climatic niches as the weevil. Projections into all climate scenarios suggest range retractions for all species, with a decreased extent of both orchid populations subject to S. polita attack. Thus, we illustrate for island invasions how climate change will likely alter the distribution of acquired biotic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abelleira Martínez OJ, Rodríguez MA, Rosario I, Soto N, López A, Lugo AE (2010) Structure and species composition of novel forests dominated by an introduced species in northcentral Puerto Rico. New for 39:1–18

    Article  Google Scholar 

  • Ackerman JD (1995) An orchid flora of Puerto Rico and the Virgin Islands. Mem NY Bot Gard 73:1–203

    Google Scholar 

  • Ackerman JD (2007) Invasive orchids: weeds we hate to love? Lankesteriana 7:19–21

    Google Scholar 

  • Ackerman JD (2012) Orchids gone wild: discovering naturalized orchids in Hawaii. Orchids 81:88–93

    Google Scholar 

  • Ackerman JD (2021) Island invasions by introduced honey bees: what can be expected for Puerto Rico and the Caribbean? Front Ecol Evol 8:556744

  • Ackerman JD, Collaborators, (2014) Orchid flora of the Greater Antilles. Mem NY Bot Gard 109:1–625

    Google Scholar 

  • Ackerman JD, Falcón W, Molinari J, Vega C, Espino I, Cuevas AA (2014) Biotic resistance and invasional meltdown: consequences of acquired interspecific interactions for an invasive orchid, Spathoglottis plicata in Puerto Rico. Biol Invasions 16:2435–2447

    Article  Google Scholar 

  • Ackerman JD (2017) Orchidées invasives: acceleration de la colonization et de la propagation. L’Orchidophile 213:167–173

    Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Almasi KN (2000) A non-native perennial invades a native forest. Biol Invasions 2:219–230

    Article  Google Scholar 

  • Aryal A, Shrestha UB, Ji W, Ale SB, Shrestha S, Ingty T, Maraseni T, Cockfield G, Raubenheimer D (2016) Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol Evol 6:065–4075

    Article  Google Scholar 

  • Bayman P, Espinosa ATM, Aponte CMS, Guevara NCH, Ruiz NLV (2016) Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. Am J Bot 103:1880–1889

    Article  PubMed  Google Scholar 

  • Bayman P, González EJ, Fumero JJ, Tremblay RL (2002) Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. J Ecol 90:1002–1008

    Article  CAS  Google Scholar 

  • Beaumont LJ, Gallagher RV, Downey PO, Thuiller W, Leishman MR, Hughes L (2009) Modelling the impact of Hieracium spp. on protected areas in Australia under future climates. Ecography 32:757–764

    Article  Google Scholar 

  • Bellgard SE, Williams SE (2011) Response of mycorrhizal diversity to current climatic changes. Diversity 3:8–90

    Article  CAS  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Bradley BA, Oppenheimer M, Wilcove DS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15:1511–1521

    Article  Google Scholar 

  • Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318

    Article  PubMed  Google Scholar 

  • Brewster LB, Ackerman JD (2013) Distribution of orchid species in the Luquillo Mountains, Puerto Rico. Caribb J Sci 47:50–56

    Article  Google Scholar 

  • Brooks CJ, Hewitt J (1909) [1910]) Notes on the fertilisation of a few orchids in Sarawak. J Straits Branch R Asiatic Soc 54:99–106

    Google Scholar 

  • Brown JL, Bennett JR, French CM (2017) SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5:e4095

  • Burton ML, Samuelson LJ, Pan S (2005) Riparian woody plant diversity and forest structure along an urban-rural gradient. Urban Ecosyst 8:93–106. https://doi.org/10.1007/s11252-005-1421-6

    Article  Google Scholar 

  • Chen SC, Liu ZJ, Zhu GH et al (2009) Orchidaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, Science Press, vol 25. Beijing, China, pp 314–315

    Google Scholar 

  • Chinea JD (2002) Tropical forest succession on abandoned farms in the Humacao Municipality of eastern Puerto Rico. For Ecol Manag 167:195–207

    Article  Google Scholar 

  • Crain BJ (2012) On the relationship between bryophyte cover and the distribution of Lepanthes spp. Lankesteriana 12:13–18

    Article  Google Scholar 

  • D’Antonio CM, Dudley TL (1995) Biological invasions as agents of change on islands versus mainlands. In: Vitousek PM, Loope LL, Adsersen H (eds) Islands: Biological diversity and ecosystem function. Springer, Stanford, California, pp 103–121

    Chapter  Google Scholar 

  • Daehler CC (1998) Taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biol Conserv 84:167–180

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Ann Rev Ecol Syst 34:182–211

    Google Scholar 

  • de Araújo CB, Marcondes-Machado LO, Costa GC (2014) The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. J Biogeogr 41:513–523

    Article  Google Scholar 

  • Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) A century of the ornamental plant trade and its impact on invasion success. Divers Distrib 13:527–534

    Article  Google Scholar 

  • Denslow JS, Space JC, Thomas PA (2009) Invasive exotic plants in the tropical Pacific islands: patterns of diversity. Biotropica 41:162–170

    Article  Google Scholar 

  • Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, Cambridge

    Google Scholar 

  • Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Change Biol 24:1150–1163

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Meth Ecol Evol 1:330–334

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Meuthen, London

    Book  Google Scholar 

  • Ewel JJ, Whitmore JL (1973) The ecological life zones of Puerto Rico and the US Virgin Islands. Research Paper No. ITF-18. Río Piedras: USDA Forest Service Institute of Tropical Forestry

  • Fagan WF, Lewis M, Neubert MG, Aumann C, Apple JL, Bishop J (2005) When can herbivores slow or reverse the spread of an invading plant? A test case from Mount St. Helens Amer Nat 166:669–685

    Article  Google Scholar 

  • Falcón W, Ackerman JD, Tremblay RL (2017) Quantifying how acquired interactions with native and invasive insects influence population growth rates of a non-indigenous plant. Biol Invasions 19:895–911

    Article  Google Scholar 

  • Falcón W, Tremblay RL (2018) From the cage to the wild: introductions of Psittaciformes to Puerto Rico. PeerJ 6:e5669. https://doi.org/10.7717/peerj.5669

  • Feldmann P, Barré N (2001) Atlas des orchidées sauvages de la Guadeloupe. Collection Patrimoines Naturels 48:1–228

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Forbes HO (1885) On the various contrivances for ensuring self-fertilization in some tropical orchids. Journal of the Linnean Society, Botany 21:538–550

    Article  Google Scholar 

  • Fine PV, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    Article  CAS  PubMed  Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25(6):325–331

    Article  PubMed  Google Scholar 

  • Goberville E, Beaugrand G, Hautekèete NC, Piquot Y, Luczak C (2015) Uncertainties in the projection of species distributions related to general circulation models. Ecol Evol 5:1100–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh CJ, Strauss MS, Arditti J (1982) Flower induction and physiology in orchids. In: Arditti J (ed) Orchid biology: Reviews and perspectives II. Cornell University Press, NY, pp 213–241

    Google Scholar 

  • Gould WA, Alarcon C, Fevold B, Jimenez ME, Martinuzzi S, Potts G, Quinones M, Mariano S, Ventosa E (2008) The Puerto Rico gap analysis project volume 1: Land cover, vertebrate species, distributions, and land stewardship. USDA Forest Service International Institute of Tropical Forestry

  • Hayhoe K (2013) Quantifying key drivers of climate variability and change for puerto rico and the caribbean. Raleigh, North Carolina: Caribbean Landscape Conservation Cooperative

  • Hillerislambers J, Harsch MA, Ettinger AK, Ford KR, Theobald EJ (2013) How will biotic interactions influence climate change–induced range shifts? Ann New York Acad Sci 1297:112–125

    Google Scholar 

  • Holway DA (1995) Distribution of the Argentine ant (Linepithema humile) in northern California. Conserv Biol 9:1634–1637

    Article  Google Scholar 

  • Huda MK, Wilcock CC (2012) Rapid floral senescence following male function and breeding systems of some tropical orchids. Plant Biol 14:278–284

    Article  CAS  PubMed  Google Scholar 

  • Izuddin M, Yam TW, Webb EL (2019) Germination niches and seed persistence of tropical epiphytic orchids in an urban landscape. J Plant Res 132:383–394

    Article  CAS  PubMed  Google Scholar 

  • Johansen B (1990) Incompatibility in Dendrobium (Orchidaceae). Bot J Linn Soc 103:165–196

    Article  Google Scholar 

  • Jolliffe K (2010) Epiphytic Orchids of the Seychelles . Kapisen 10:6–8

    Google Scholar 

  • Khalyani AH, Gould WA, Harmsen E, Terando A, Quinones M, Collazo JA (2016) Climate change implications for tropical islands: Interpolating and interpreting statistically downscaled GCM projections for management and planning. J Appl Meteorol Clim 55:265–282

    Article  Google Scholar 

  • Kolanowska M, Konowalik K (2014) Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from Southeast Asia. Biotropica 46:157–165

    Article  Google Scholar 

  • Kolanowska M, Jakubska-Busse A (2020) Is the lady's-slipper orchid (Cypripedium calceolus) likely to shortly become extinct in Europe?—Insights based on ecological niche modelling. PLoS One 15:e0228420.

  • Lankau RA, Zhu K, Ordonez A (2015) Mycorrhizal strategies of tree species correlate with trailing range edge responses to current and past climate change. Ecology 96:1451–1458

    Article  Google Scholar 

  • Leong TM, Wee YC (2013) Observations of pollination in the pigeon orchid, Dendrobium crumenatum Swartz (Orchidaceae) in Singapore. Nature Singapore 6:91–96

    Google Scholar 

  • Ma M, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Mack RN (2003) Global plant dispersal, naturalization, and invasion: pathways, modes, and circumstances. In: Ruiz GM, Carlton JT (eds) Invasive species: vectors and management strategies. Island Press, Washington, pp 3–30

    Google Scholar 

  • Mack R, Erneberg M (2002) The United States Naturalized Flora: Largely the Product of Deliberate Introductions. Ann Mo Bot Gard 89:176–189. https://doi.org/10.2307/3298562

    Article  Google Scholar 

  • Malekia M, Sadeghi M (2020) Predicting impacts of climate change on the potential distribution of two interacting species in the forests of western Iran. Meteorol Appl 27:e1800

  • Martinuzzi S, Gould WA, Gonzalez OMR (2007) Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data. Lands Urb Plan 79:288–297

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. https://doi.org/10.1016/j.biocon.2005.09.005

    Article  Google Scholar 

  • Menéndez R, González-Megías ADELA, Lewis OT, Shaw MR, Thomas CD (2008) Escape from natural enemies during climate-driven range expansion: a case study. Ecol Entomol 33:413–421

    Article  Google Scholar 

  • Meng Y-Y, Zhang W-O, Selosse M-A, Gao J-Y (2019) Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza 29:541–547

    Article  CAS  PubMed  Google Scholar 

  • Mortensen DA, Rauschert ES, Nord AN, Jones BP (2009) Forest roads facilitate the spread of invasive plants. Invas Plant Sci Mana 2:191–199

    Article  Google Scholar 

  • Moser B, Fridley JD, Askew AP, Grime JP (2011) Simulated migration in a long-term climate change experiment: invasions impeded by dispersal limitation, not biotic resistance. J Ecol 99:1229–1236

    Article  Google Scholar 

  • O’Brien CW, Turnbow RH Jr (2011) An annotated list of Curculionidae (Coleoptera) of Dominica (excluding Scolytinae and Platypodidae). Insecta Mundi 0179:1–31

    Google Scholar 

  • O’Dowd DJ, Green P, Lake PS (2003) Invasional ‘meltdown’ on an oceanic island. Ecol Lett 6:812–817

    Article  Google Scholar 

  • Olaya-Arenas P, Meléndez-Ackerman EJ, Pérez ME, Tremblay R (2011) Demographic response by a small epiphytic orchid. Amr J Bot 98:2040–2048

    Article  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of mycorrhizal fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in the HJ Andrews Experimental Forest, Oregon. Conser Biol 14:64–75

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Schapire RE (2018) Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 22 July 2019

  • Puerto Rico GAP Analysis Project (2006) PRGAP Landcover. USDA Forest Service, International Institute of Tropical Forestry

    Google Scholar 

  • Pulwarty RS, Nurse LA, Trotz UO (2010) Caribbean islands in a changing climate. Environment 52(6):16–27

    Google Scholar 

  • Rasmussen HN, Rasmussen FN (2014) Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae. Bot J Linn Soc 175:313–327

    Article  Google Scholar 

  • Recart W, Ackerman JD, Cuevas AA (2013) There goes the neighborhood: apparent competition between invasive and native orchids mediated by a specialist florivorous weevil. Biol Invas 15:283–293

    Article  Google Scholar 

  • Rojas-Sandoval J, Acevedo-Rodríguez P (2015) Naturalization and invasion of alien plants in Puerto Rico and the Virgin Islands. Biol Invas 17:149–163

    Article  Google Scholar 

  • Scheffknecht S, Winkler M, Hülber K, Mata Rosas M, Hietz P (2010) Seedling establishment of epiphytic orchids in forests and coffee plantations in Central Veracruz, Mexico. J Trop Ecol 26:93–102

    Article  Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–3479

    Article  PubMed  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun. https://doi.org/10.1038/ncomms14435

    Article  PubMed  PubMed Central  Google Scholar 

  • Seifriz W (1923) The gregarious flowering of the orchid Dendrobium crumenatum. Amer J Bot 10:32–37

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sin H, Beard KH, Pitt WC (2008) An invasive frog, Eleutherodactylus coqui, increases new leaf production and leaf litter decomposition rates through nutrient cycling in Hawaii. Biol Invasions 10:335–345

    Article  Google Scholar 

  • Soifer LG, Ackerman JD (2019) Extremes of forest–urban gradient offer some refuge for alien orchid invasion. Biol Invas 21:2143–2157

    Google Scholar 

  • Stewart AJ, Bantock TM, Beckmann BC, Botham MS, Hubble D, Roy DB (2015) The role of ecological interactions in determining species ranges and range changes. Biol J Linn Soc 115:647–666

    Article  Google Scholar 

  • Stohlgren TJ, Barnett DT, Jamevich CS, Flather C, Kartesz J (2008) The myth of plant species saturation. Ecol Lett 11:313–326

    Article  PubMed  Google Scholar 

  • Sugiura N (2013) Pollination and floral ecology of Arundina graminifolia (Orchidaceae) at the northern border of the species’ natural distribution. J Plant Res 127:131–139

    Article  PubMed  Google Scholar 

  • Svenning JC, Gravel D, Holt RD, Schurr FM, Thuiller W, Münkemüller T et al (2014) The influence of interspecific interactions on species range expansion rates. Ecography 37:1198–1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR et al (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313

    Article  Google Scholar 

  • Thompson J, Lugo AE, Thomlinson J (2007) Land use history, hurricane disturbance, and fate of introduced species in a subtropical wet forest in Puerto Rico. Plant Ecol 192:289–301

    Article  Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: spasmodic journey to diversification. Biol J Lin Soc 84:1–54

    Article  Google Scholar 

  • Tremblay RL, McCarthy MA (2014) Bayesian estimates of transition probabilities in seven small lithophytic orchid populations: maximizing data availability from many small samples. PLoS One 9:e102859

  • Tsiftsis S, Djordjević V (2020) Modelling sexually deceptive orchid species distributions under future climates: the importance of plant–pollinator interactions. Sci Rep-UK 10:1–12

    Article  CAS  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11(12):1351–1363

    Article  PubMed  Google Scholar 

  • Van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral Gables

    Google Scholar 

  • Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos T Roy Soc B 365:2025–2034

    Article  Google Scholar 

  • Vila M, Pujadas J (2001) Land-use and socio-economic correlates of plant invasions in European and North African countries. Biol Conserv 100:397–401

    Article  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin J, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389

    Article  CAS  PubMed  Google Scholar 

  • Walther GR (2010) Community and ecosystem responses to recent climate change. Philos T Roy Soc B 365:2019–2024

    Article  Google Scholar 

  • Yeh C-M, Chung KM, Liang C-K, Tsai W-C (2019) New insights into the symbiotic relationship between orchids and fungi. Appl Sci 9:585

    Article  CAS  Google Scholar 

  • Zotz G (2016) Plants on plants - the biology of vascular epiphytes. Springer International Publishing, Switzerland

    Book  Google Scholar 

Download references

Acknowledgements

We thank Lydia Soifer for providing weevil waypoints and guidance with GIS and Maxent; Wilfredo Falcón for assistance with Maxent; and Steve Silvestrini for localities of remote populations.

Funding

Funding was provided by a grant from the National Science Foundation-Research. Experience for Undergraduates program (DBI-1930099, A. Ramírez, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan A. Foster.

Ethics declarations

Conflicts of interest

The authors declare that they have no financial or non-financial conflicts of interest.

Consent for publication

All authors provide their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3086 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, E.A., Ackerman, J.D. Future changes in the distribution of two non-indigenous orchids and their acquired enemy in Puerto Rico. Biol Invasions 23, 3545–3563 (2021). https://doi.org/10.1007/s10530-021-02596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-021-02596-3

Keywords

Navigation