Skip to main content

Advertisement

Log in

A 350 mV, 2 MHz, 16-kb SRAM with programmable wordline boosting in the 65 nm CMOS technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The paper presents an SRAM macro capable of working down to 350 mV with programmable wordline boosting feature. Wordline boosting allows us to improve the performance while keep the supply voltage in sub-threshold region. The measurement results on a 16 kb macro achieves minimum energy consumption of 0.536 fJ/b at 400 mV and operating at 400 mV. In addition, the macro achieves 22% lower energy consumption under optimal boost condition with respect to no boost condition for the same operation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alioto, M. (2012). Ultra-low power VLSI circuit design demystified and explained: A tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(1), 3–29.

    Article  MathSciNet  Google Scholar 

  2. Andersson, O., Mohammadi, B., Meinerzhagen, P., Burg, A., & Rodrigues, J. N. (2016). Ultra low voltage synthesizable memories: A trade-off discussion in 65 nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(6), 806–817.

    Article  MathSciNet  Google Scholar 

  3. Calhoun, B., Wang, A., & Chandrakasan, A. (2005). Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE Journal of Solid-State Circuits, 40(9), 1778–1786.

    Article  Google Scholar 

  4. Calhoun, B.H., & Chandrakasan, A. (2004). Characterizing and modeling minimum energy operation for subthreshold circuits. In Proceedings of the 2004 international symposium on low power electronics and design—ISLPED ’04 (pp. 90–95).

  5. Chiu, Y. W., Hu, Y. H., Tu, M. H., Zhao, J. K., Chu, Y. H., Jou, S. J., & Chuang, C. T. (2014). 40 nm bit-interleaving 12T subthreshold SRAM with data-aware write-assist. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(9), 2578–2585.

    Article  Google Scholar 

  6. Cho, K., Park, J., Oh, T. W., & Jung, S. O. (2020). One-sided Schmitt-Trigger-based 9T SRAM cell for near-threshold operation. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(5), 1551–1561.

    Article  Google Scholar 

  7. Cramér, H. (2016). Mathematical methods of statistics (PMS-9) (Vol. 9). Princeton: Princeton University Press.

    Google Scholar 

  8. Do, A. T., Zeinolabedin, S. M. A., & Kim, T. T. H. (2019). Energy-efficient data-aware SRAM design utilizing column-based data encoding. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 2154–2158.

    Article  Google Scholar 

  9. Ensan, S. S., Moaiyeri, M. H., Moghaddam, M., & Hessabi, S. (2019). A low-power single-ended SRAM in FinFET technology. AEU-International Journal of Electronics and Communications, 99, 361–368.

    Article  Google Scholar 

  10. Fujiwara, H., Chen, Y. H., Lin, C. Y., Wu, W. C., Sun, D., Wu, S. R., Liao, H. J., & Chang, J. (2016). A 64-Kb 0.37 V 28 nm 10T-SRAM with mixed-Vth read-port and boosted WL scheme for IoT applications. In Solid-state circuits conference (A-SSCC), 2016 IEEE Asian (pp. 185–188). IEEE.

  11. Gryboś, P., Idzik, M., & Skoczen, A. (2006). Design of low noise charge amplifier in sub-micron technology for fast shaping time. Analog Integrated Circuits and Signal Processing, 49(2), 107–114.

    Article  Google Scholar 

  12. Gupta, S., Gupta, K., Calhoun, B. H., & Pandey, N. (2018). Low-power near-threshold 10T SRAM bit cells with enhanced data-independent read port leakage for array augmentation in 32-nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(3), 978–988.

    Article  Google Scholar 

  13. Joshi, R. V., Ziegler, M. M., & Wetter, H. (2017). A low voltage SRAM using resonant supply boosting. IEEE Journal of Solid-State Circuits, 52(3), 634–644.

    Article  Google Scholar 

  14. Koo, K. H., Wei, L., Keane, J., Bhattacharya, U., Karl, E. A., & Zhang, K (2015). A 0.094 \(\mu\)\(m^2\) high density and aging resilient 8T SRAM with 14 nm FinFET technology featuring 560 mV V MIN with read and write assist. In 2015 Symposium on VLSI circuits (VLSI Circuits) (pp. C266–C267). IEEE.

  15. Kulkarni, J., Geuskens, B., Karnik, T., Khellah, M., Tschanz, J., & De, V. (2012). Capacitive-coupling wordline boosting with self-induced V CC collapse for write V MIN reduction in 22-nm 8T SRAM. In 2012 IEEE International solid-state circuits conference digest of technical papers (ISSCC) (pp. 234–236). IEEE.

  16. Liu, B., Pourshaghaghi, H. R., Londono, S. M., & de Gyvez, J. P. (2011). Process variation reduction for CMOS logic operating at sub-threshold supply voltage. In 2011 14th Euromicro conference on digital system design (DSD) (pp. 135–139). IEEE.

  17. Lu, C. Y., Chuang, C. T., Jou, S. J., Tu, M. H., Wu, Y. P., Huang, C. P., et al. (2015). A 0.325 V, 600-kHz, 40-nm 72-kb 9T subthreshold SRAM with aligned boosted write wordline and negative write bitline write-assist. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(5), 958–962.

    Article  Google Scholar 

  18. Lu, L., Yoo, T., Kim, T. T. H., et al. (2020). A 0.506-pJ 16-kb 8T SRAM with vertical read wordlines and selective dual split power lines. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28, 1345–1356.

    Article  Google Scholar 

  19. Mohammad, K., Tekeste, T., Mohammad, B., Saleh, H., & Qurran, M. (2019). Embedded memory options for ultra-low power IoT devices. Microelectronics Journal, 93, 104634.

    Article  Google Scholar 

  20. Mohammadi, B., Andersson, O., Nguyen, J., Ciampolini, L., Cathelin, A., & Rodrigues, J. N. (2018). A 128 kb 7T SRAM using a single-cycle boosting mechanism in 28-nm FD-SOI. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(4), 1257–1268. https://doi.org/10.1109/TCSI.2017.2750762.

    Article  Google Scholar 

  21. Moradinasab, M., Karbassian, F., & Fathipour, M. (2009). A comparison study of the effects of supply voltage and temperature on the stability and performance of CNFET and nanoscale Si-MOSFET SRAMs. In 2009 1st Asia symposium on quality electronic design (pp. 19–23). IEEE.

  22. Morimura, H., & Shibata, N. (1998). A step-down boosted-wordline scheme for 1-V battery-operated fast SRAM’s. IEEE Journal of Solid-State Circuits, 33(8), 1220–1227.

    Article  Google Scholar 

  23. Nabavi, M. (2012). Designing faster CMOS subthreshold circuits using transistor sizing and paralled transistor stacks. Ph.D. thesis, Carleton University

  24. Nabavi, M., Ramezankhani, F., & Shams, M. (2016). Optimum PMOS-to-NMOS width ratio for efficient subthreshold CMOS circuits. IEEE Transactions on Electron Devices, 63(3), 916–924.

    Article  Google Scholar 

  25. Nabavi, M., & Sachdev, M. (2017). A 290-mV, 3.34-MHz, 6T SRAM With pMOS access transistors and boosted wordline in 65-nm CMOS technology. IEEE Journal of Solid-State Circuits, PP(99), 1–12. https://doi.org/10.1109/JSSC.2017.2747151.

    Article  Google Scholar 

  26. Nabavi, M., & Shams, M. (2012). A gate sizing and transistor fingering strategy for subthreshold CMOS circuits. IEICE Electronics Express, 9(19), 1550–1555.

    Article  Google Scholar 

  27. Pan, Y., Kong, J., Ozdemir, S., Memik, G., & Chung, S. W. (2009). Selective wordline voltage boosting for caches to manage yield under process variations. In Proceedings of the 46th annual design automation conference (pp. 57–62). ACM

  28. Rabaey, J., Chandrakasan, A., & Nikolic, B. (2003). Digital integrated circuits: A design perspective. Englewood Cliffs: Prentice Hall/Pearson Education.

    Google Scholar 

  29. Sakurai, T., & Newton, A. R. (1990). Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE Journal of solid-state circuits, 25(2), 584–594.

    Article  Google Scholar 

  30. Shakir, T. & Sachdev, M. (2012). A word-line boost driver design for low operating voltage 6T-SRAMs. In 2012 IEEE 55th International midwest symposium on circuits and systems (MWSCAS) (pp. 33–36). IEEE.

  31. Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices. Hoboken: Wiley.

    Book  Google Scholar 

  32. Takeda, K., Saito, T., Asayama, S., Aimoto, Y., Kobatake, H., Ito, S., et al. (2011). Multi-step word-line control technology in hierarchical cell architecture for scaled-down high-density SRAMs. IEEE Journal of Solid-State Circuits, 46(4), 806–814.

    Article  Google Scholar 

  33. Turi, M. A., & Delgado-Frias, J. G. (2019). Effective low leakage 6T and 8T FinFET SRAMs: using cells with reverse-biased FinFETs, near-threshold operation, and power gating. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 765–769.

    Article  Google Scholar 

  34. Verma, N., & Chandrakasan, A. P. (2008). A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE Journal of Solid-State Circuits, 43(1), 141–149. https://doi.org/10.1109/JSSC.2007.908005.

    Article  Google Scholar 

  35. Zhai, B., Hanson, S., Blaauw, D., & Sylvester, D. (2008). A variation-tolerant Sub-200 mV 6-T subthreshold SRAM. IEEE Journal of Solid-State Circuits, 43(10), 2338–2348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Nabavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabavi, M., Sachdev, M. A 350 mV, 2 MHz, 16-kb SRAM with programmable wordline boosting in the 65 nm CMOS technology. Analog Integr Circ Sig Process 109, 213–224 (2021). https://doi.org/10.1007/s10470-021-01907-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01907-x

Keywords

Navigation