Skip to main content
Log in

Online Budgeted Maximum Coverage

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the Online Budgeted Maximum Coverage problem. Subsets of a weighted ground set U arrive one by one, where each set has a cost. The online algorithm has to select a collection of sets, under the constraint that their cost is at most a given budget. Upon arrival of a set the algorithm must decide whether to accept or to irrevocably reject the arriving set, and it may also irrevocably drop previously accepted sets. The goal is to maximize the total weight of the elements covered by the sets in the chosen collection. We give a deterministic \(\frac{4}{1-r}\)-competitive algorithm where r is the maximum ratio between the cost of a set and the total budget, and show that the competitive ratio of any deterministic online algorithm is \(\Omega (\frac{1}{1-r})\). We further give a randomized O(1)-competitive algorithm. We also give a deterministic \(O(\Delta )\)-competitive algorithm, where \(\Delta \) is the maximum weight of a set and a modified version of it with competitive ratio of \(O(\min \{\Delta ,\sqrt{w(U)}\})\) for the case that the total weight of the elements, w(U), is known in advance. A matching lower bound of \(\Omega (\min \{\Delta ,\sqrt{w(U)}\})\) is given. Finally, our results, including the lower bounds, apply also to Removable Online Knapsack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A function f is called submodular if \(f(T) + f(T') \ge f(T \cup T') + f(T \cap T')\) for every two sets T and \(T'\) in the domain of f.

References

  1. Ageev, A.A., Sviridenko, M.: Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM J. Comput. 39(2), 361–370 (2009)

    Article  MathSciNet  Google Scholar 

  3. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for \(k\)-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)

    Article  MathSciNet  Google Scholar 

  4. Ausiello, G., Boria, N., Giannakos, A., Lucarelli, G., Paschos, V.T.: Online maximum \(k\)-coverage. Discret. Appl. Math. 160(13–14), 1901–1913 (2012)

    Article  MathSciNet  Google Scholar 

  5. Awerbuch, B., Azar, Y., Fiat, A., Leighton, F.T.: Making commitments in the face of uncertainty: how to pick a winner almost every time. In: 28th Annual ACM Symposium on the Theory of Computing, pp. 519–530 (1996)

  6. Badanidiyuru, A.: Buyback problem—approximate matroid intersection with cancellation costs. In: 38th Annual International Colloquium on Automata, Languages and Programming, Volume 6755 of LNCS, pp. 379–390 (2011)

  7. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2, 198–203 (1981)

    Article  MathSciNet  Google Scholar 

  8. Berman, O., Bertsimas, D., Larson, R.C.: Locating discretionary service facilities, ii: maximizing market size, minimizing inconvenience. Oper. Res. 43(4), 623–632 (1995)

    Article  Google Scholar 

  9. Berman, O., Larson, R.C., Fouska, N.: Optimal location of discretionary service facilities. Transp. Sci. 26(4), 201–611 (1992)

    Article  Google Scholar 

  10. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: Submodular maximization with cardinality constraints. In: 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1433–1452 (2014)

  11. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with preemption. ACM Trans. Algorithms 15(3), 30:1–30:31 (2019)

    Article  MathSciNet  Google Scholar 

  12. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing. Math. Oper. Res. 34(2), 270–286 (2009)

    Article  MathSciNet  Google Scholar 

  13. Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings, matroids, and more. In: 17th International Conference on Integer Programming and Combinatorial Optimization, Volume 8494 of LNCS, pp. 210–221 (2014)

  14. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  Google Scholar 

  15. Cygan, M., Jeż, L., Sgall, J.: Online knapsack revisited. Theor. Comput. Syst. 58(1), 153–190 (2016)

  16. Demange, M., Paschos, V.T.: On-line vertex-covering. Theor. Comput. Sci. 332(1–3), 83–108 (2005)

    Article  MathSciNet  Google Scholar 

  17. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)

    Article  MathSciNet  Google Scholar 

  18. Dinur, I., Safra, S.: The importance of being biased. In: 34th Annual ACM Symposium on the Theory of Computing, pp. 33–42 (2002)

  19. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  Google Scholar 

  20. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: Analysis of approximation algorithms for maximizing submodular set function II. Math. Program. Study 8, 73–87 (1978)

    Article  Google Scholar 

  21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  22. Han, X., Kawase, Y., Makino, K.: Randomized algorithms for online knapsack problems. Theoret. Comput. Sci. 562, 395–405 (2015)

    Article  MathSciNet  Google Scholar 

  23. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982)

    Article  MathSciNet  Google Scholar 

  24. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problem. PWS Publishing Company, New York (1997)

    Google Scholar 

  25. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of maximum \(k\)-coverage. Nav. Res. Logist. 45(6), 615–627 (1998)

    Article  MathSciNet  Google Scholar 

  26. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)

    Article  MathSciNet  Google Scholar 

  27. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: 29th Annual International Colloquium on Automata, Languages and Programming, Volume 2380 of LNCS, pp. 293–305 (2002)

  28. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)

    Article  MathSciNet  Google Scholar 

  29. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)

    Article  MathSciNet  Google Scholar 

  30. Komm, D., Královic, R., Mömke, T.: On the advice complexity of the set cover problem. In: 7th International Computer Science Symposium in Russia, pp. 241–252 (2012)

  31. Lovász, L.: On the ratio of optimal integeral and fractional solutions. Discret. Math. 13, 383–390 (1975)

    Article  Google Scholar 

  32. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Program. 68, 73–104 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Megiddo, N., Zemel, E., Hakimi, S.L.: The maximum coverage location problem. SIAM J. Algebr. Discrete Methods 4(2), 253–261 (1983)

    Article  MathSciNet  Google Scholar 

  34. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, Hoboken (1988)

    Book  Google Scholar 

  35. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  36. Rawitz, D., Rosén, A.: Online budgeted maximum coverage. In: 24th Annual European Symposium on Algorithms, Volume 57 of LIPIcs, pp. 73:1–73:17 (2016)

  37. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: 29th Annual ACM Symposium on the Theory of Computing, pp. 475–484 (1997)

  38. Saha, B., Getoor, L.: On maximum coverage in the streaming model & application to multi-topic blog-watch. In: SIAM International Conference on Data Mining, pp. 697–708 (2009)

  39. Sahni, S.: Approximate algorithms for the 0/1 knapsack problem. J. ACM 22(1), 115–124 (1975)

    Article  MathSciNet  Google Scholar 

  40. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  41. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

  42. Zhou, Y., Chakrabarty, D., Lukose, R.M.: Budget constrained bidding in keyword auctions and online knapsack problems. In: 4th international Workshop on Internet and Network Economics, Volume 5385 of LNCS, pp. 566–576 (2008)

Download references

Acknowledgements

We would like to thank an anonymous referee for improving the lower bound to \(\Omega (1/(1-r))\). (The lower bound that appeared in the conference version [36] was \(\Omega (1/\sqrt{1-r})\).) We also thank the referee for a suggestion that lead to an improvement in the constant randomized competitive ratio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Rawitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in the proceedings of ESA 2016 [36].

Dror Rawitz: Supported in part by a Grant from the Israeli Ministry of Science, Technology, and Space, Israel (French-Israeli Project Maimonide No. 3-10996) and by the Israel Science Foundation (Grant No. 497/14). Adi Rosén: Research supported in part by ANR Project NeTOC, and by a French-Israeli Grant PHC Maimonide 31768XL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawitz, D., Rosén, A. Online Budgeted Maximum Coverage. Algorithmica 83, 2989–3014 (2021). https://doi.org/10.1007/s00453-021-00850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00850-7

Keywords

Navigation