Skip to main content

Advertisement

Log in

Examination of Urinary Excretion of Unchanged Drug in Humans and Preclinical Animal Models: Increasing the Predictability of Poor Metabolism in Humans

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

A dataset of fraction excreted unchanged in the urine (fe) values was developed and used to evaluate the ability of preclinical animal species to predict high urinary excretion, and corresponding poor metabolism, in humans.

Methods

A literature review of fe values in rats, dogs, and monkeys was conducted for all Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 3 and 4 drugs (n=352) and a set of Class 1 and 2 drugs (n=80). The final dataset consisted of 202 total fe values for 135 unique drugs. Human and animal data were compared through correlations, two-fold analysis, and binary classifications of high (fe ≥30%) versus low (<30%) urinary excretion in humans. Receiver Operating Characteristic curves were plotted to optimize animal fe thresholds.

Results

Significant correlations were found between fe values for each animal species and human fe (p<0.05). Sixty-five percent of all fe values were within two-fold of human fe with animals more likely to underpredict human urinary excretion as opposed to overpredict. Dogs were the most reliable predictors of human fe of the three animal species examined with 72% of fe values within two-fold of human fe and the greatest accuracy in predicting human fe ≥30%. ROC determined thresholds of ≥25% in rats, ≥19% in dogs, and ≥10% in monkeys had improved accuracies in predicting human fe of ≥30%.

Conclusions

Drugs with high urinary excretion in animals are likely to have high urinary excretion in humans. Animal models tend to underpredict the urinary excretion of unchanged drug in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BDDCS:

Biopharmaceutics Drug Disposition Classification System

fe:

Fraction excreted unchanged in the urine

FN:

False negative

FP:

False positive

NME:

New molecular entity

PPV:

Positive predictive value

NPV:

Negative predictive value

ROC:

Receiver Operating Characteristic

TN:

True negative

TP:

True positive

US FDA:

United States Food and Drug Administration

References

  1. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283(1):46–58.

    CAS  PubMed  Google Scholar 

  2. Ward KW, Smith BR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. I. Clearance. Drug Metab Dispos. 2004;32(6):603–11. https://doi.org/10.1124/dmd.32.6.603.

    Article  CAS  PubMed  Google Scholar 

  3. Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–405. https://doi.org/10.1124/dmd.108.020479.

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Gandhi YA, Duignan DB, Morris ME. Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure-pharmacokinetic relationships. AAPS J. 2009;11(3):511–25. https://doi.org/10.1208/s12248-009-9124-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hosea NA, Collard WT, Cole S, Maurer TS, Fang RX, Jones H, et al. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J Clin Pharmacol. 2009;49(5):513–33. https://doi.org/10.1177/0091270009333209.

    Article  CAS  PubMed  Google Scholar 

  6. Ring BJ, Chien JY, Adkison KK, Jones HM, Rowland M, Jones RD, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: comparative assessement of prediction methods of human clearance. J Pharm Sci. 2011;100(10):4090–110. https://doi.org/10.1002/jps.22552.

    Article  CAS  PubMed  Google Scholar 

  7. Varma MV, Chang G, Lai Y, Feng B, El-Kattan AF, Litchfield J, et al. Physicochemical property space of hepatobiliary transport and computational models for predicting rat biliary excretion. Drug Metab Dispos. 2012;40(8):1527–37. https://doi.org/10.1124/dmd.112.044628.

    Article  CAS  PubMed  Google Scholar 

  8. Hosey CM, Broccatelli F, Benet LZ. Predicting when biliary excretion of parent drug is a major route of elimination in humans. AAPS J. 2014;16(5):1085–96. https://doi.org/10.1208/s12248-014-9636-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharifi M, Ghafourian T. Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J. 2014;16(1):65–78. https://doi.org/10.1208/s12248-013-9541-z.

    Article  CAS  PubMed  Google Scholar 

  10. Hosey CM, Benet LZ. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions. Mol Pharmaceut. 2015;12(5):1456–66. https://doi.org/10.1021/mp500783g.

    Article  CAS  Google Scholar 

  11. Watanabe R, Ohashi R, Esaki T, Kawashima H, Natsume-Kitatani Y, Nagao C, et al. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Sci Rep. 2019;9(1):18782. https://doi.org/10.1038/s41598-019-55325-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wajima T, Fukumura K, Yano Y, Oguma T. Prediction of human pharmacokinetics from animal data and molecular structural parameters using multivariate regression analysis: oral clearance. J Pharm Sci. 2003;92(12):2427–40. https://doi.org/10.1002/jps.10510.

    Article  CAS  PubMed  Google Scholar 

  13. Wajima T, Yano Y, Fukumura K, Oguma T. Prediction of human pharmacokinetic profile in animal scale up based on normalizing time course profiles. J Pharm Sci. 2004;93(7):1890–900. https://doi.org/10.1002/jps.20099.

    Article  CAS  PubMed  Google Scholar 

  14. Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42. https://doi.org/10.2165/00003088-200645050-00006.

    Article  CAS  PubMed  Google Scholar 

  15. Poulin P, Jones RD, Jones HM, Gibson CR, Rowland M, Chien JY, et al. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach. J Pharm Sci. 2011;100(10):4127–57. https://doi.org/10.1002/jps.22550.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma V, McNeill JH. To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol. 2009;157(6):907–21. https://doi.org/10.1111/j.1476-5381.2009.00267.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huh Y, Smith DE, Feng MR. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs. Xenobiotica. 2011;41(11):972–87. https://doi.org/10.3109/00498254.2011.598582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang H, Mayersohn M. A global examination of allometric scaling for predicting human drug clearance and the prediction of large vertical allometry. J Pharm Sci. 2006;95(8):1783–99. https://doi.org/10.1002/jps.20481.

    Article  CAS  PubMed  Google Scholar 

  19. Huang Q, Riviere JE. The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert Opin Drug Metab Toxicol. 2014;10(9):1241–53. https://doi.org/10.1517/17425255.2014.934671.

    Article  CAS  PubMed  Google Scholar 

  20. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94. https://doi.org/10.1517/17425255.2.6.875.

    Article  CAS  PubMed  Google Scholar 

  21. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  22. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47. https://doi.org/10.1208/s12248-011-9290-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hosey CM, Chan R, Benet LZ. BDDCS Predictions, Self-Correcting Aspects of BDDCS Assignments, BDDCS Assignment Corrections, and Classification for more than 175 Additional Drugs. AAPS J. 2016;18(1):251–60. https://doi.org/10.1208/s12248-015-9845-2.

    Article  CAS  PubMed  Google Scholar 

  24. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21(20):3940–1. https://doi.org/10.1093/bioinformatics/bti623.

    Article  CAS  PubMed  Google Scholar 

  25. Zornoza T, Guerri C, Polache A, Granero L. Disposition of acamprosate in the rat: influence of probenecid. Biopharm Drug Dispos. 2002;23(7):283–91. https://doi.org/10.1002/bdd.322.

    Article  CAS  PubMed  Google Scholar 

  26. Schneck DW, Grove K, Dewitt FO, Shiroff RA, Hayes AH Jr. The quantitative disposition of procainamide and N-acetylprocainamide in the rat. J Pharmacol Exp Ther. 1978;204(1):219–25.

    CAS  PubMed  Google Scholar 

  27. McNulty MJ, Deal DL, Nelson FR, Weller S, Chandrasurin P, Shockcor J, et al. Disposition of acrivastine in the male beagle dog. Drug Metab Dispos. 1992;20(5):679–87.

    CAS  PubMed  Google Scholar 

  28. Aubets J, Cardenas A, Salva M, Jansat JM, Martinez-Tobed A, Palacios JM. Disposition and metabolism of almotriptan in rats, dogs and monkeys. Xenobiotica. 2006;36(9):807–23. https://doi.org/10.1080/00498250600802508.

    Article  CAS  PubMed  Google Scholar 

  29. Walton K, Dorne JL, Renwick AG. Species-specific uncertainty factors for compounds eliminated principally by renal excretion in humans. Food Chem Toxicol. 2004;42(2):261–74.

    Article  CAS  PubMed  Google Scholar 

  30. Belpaire FM, de Smet F, Vynckier LJ, Vermeulen AM, Rosseel MT, Bogaert MG, et al. Effect of aging on the pharmcokinetics of atenolol, metoprolol and propranolol in the rat. J Pharmacol Exp Ther. 1990;254(1):116–22.

    CAS  PubMed  Google Scholar 

  31. McAinsh J, Holmes BF. Pharmacokinetic studies with atenolol in the dog. Biopharm Drug Dispos. 1983;4(3):249–61.

    Article  CAS  PubMed  Google Scholar 

  32. Kripalani KJ, Singhvi SM, Weinstein SH, Everett DW, Bathala MS, Dean AV, et al. Disposition of [14C]aztreonam in rats, dogs, and monkeys. Antimicrob Agents Chemother. 1984;26(2):119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe T, Maeda K, Kondo T, Nakayama H, Horita S, Kusuhara H, et al. Prediction of the hepatic and renal clearance of transporter substrates in rats using in vitro uptake experiments. Drug Metab Dispos. 2009;37(7):1471–9. https://doi.org/10.1124/dmd.108.026062.

    Article  CAS  PubMed  Google Scholar 

  34. Kurihara A, Naganuma H, Hisaoka M, Tokiwa H, Kawahara Y. Prediction of human pharmacokinetics of panipenem-betamipron, a new carbapenem, from animal data. Antimicrob Agents Chemother. 1992;36(9):1810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buhring KU, Sailer H, Faro HP, Leopold G, Pabst J, Garbe A. Pharmacokinetics and metabolism of bisoprolol-14C in three animal species and in humans. J Cardiovasc Pharmacol. 1986;8(Suppl 11):S21–8.

    PubMed  Google Scholar 

  36. Singhvi SM, Peterson AE, Ross JJ Jr, Shaw JM, Keim GR, Migdalof BH. Pharmacokinetics of captopril in dogs and monkeys. J Pharm Sci. 1981;70(10):1108–12.

    Article  CAS  PubMed  Google Scholar 

  37. Siddik ZH, Newell DR, Boxall FE, Harrap KR. The comparative pharmacokinetics of carboplatin and cisplatin in mice and rats. Biochem Pharmacol. 1987;36(12):1925–32.

    Article  CAS  PubMed  Google Scholar 

  38. Gaver RC, George AM, Duncan GF, Morris AD, Deeb G, Faulkner HC, et al. The disposition of carboplatin in the beagle dog. Cancer Chemother Pharmacol. 1988;21(3):197–202.

    Article  CAS  PubMed  Google Scholar 

  39. Sawada Y, Hanano M, Sugiyama Y, Iga T. Prediction of the disposition of beta-lactam antibiotics in humans from pharmacokinetic parameters in animals. J Pharmacokinet Biopharm. 1984;12(3):241–61.

    Article  CAS  PubMed  Google Scholar 

  40. Matsushita H, Suzuki H, Sugiyama Y, Sawada Y, Iga T, Hanano M, et al. Prediction of the pharmacokinetics of cefodizime and cefotetan in humans from pharmacokinetic parameters in animals. J Pharmacobiodyn. 1990;13(10):602–11.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Wang C, Liu Q, Meng Q, Cang J, Sun H, et al. Pharmacokinetic interaction between JBP485 and cephalexin in rats. Drug Metab Dispos. 2010;38(6):930–8. https://doi.org/10.1124/dmd.110.032060.

    Article  CAS  PubMed  Google Scholar 

  42. Cabana BE, van Harken DR, Hottendorf GH. Comparative pharmacokinetics and metabolism of cephapirin in laboratory animals and humans. Antimicrob Agents Chemother. 1976;10(2):307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cundy KC, Li ZH, Hitchcock MJ, Lee WA. Pharmacokinetics of cidofovir in monkeys. Evidence for a prolonged elimination phase representing phosphorylated drug. Drug Metab Dispos. 1996;24(7):738–44.

    CAS  PubMed  Google Scholar 

  44. Taylor DC, Cresswell PR, Bartlett DC. The metabolism and elimination of cimetidine, a histamine H2-receptor antagonist, in the rat, dog, and man. Drug Metab Dispos. 1978;6(1):21–30.

    CAS  PubMed  Google Scholar 

  45. Tahara H, Kusuhara H, Chida M, Fuse E, Sugiyama Y. Is the monkey an appropriate animal model to examine drug-drug interactions involving renal clearance? Effect of probenecid on the renal elimination of H2 receptor antagonists. J Pharmacol Exp Ther. 2006;316(3):1187–94. https://doi.org/10.1124/jpet.105.094052.

    Article  CAS  PubMed  Google Scholar 

  46. Bonate PL, Arthaud L, Stuhler J, Yerino P, Press RJ, Rose JQ. The distribution, metabolism, and elimination of clofarabine in rats. Drug Metab Dispos. 2005;33(6):739–48. https://doi.org/10.1124/dmd.104.002592.

    Article  CAS  PubMed  Google Scholar 

  47. Lutz RJ, Galbraith WM, Dedrick RL, Shrager R, Mellett LB. A model for the kinetics of distribution of actinomycin-D in the beagle dog. J Pharmacol Exp Ther. 1977;200(3):469–78.

    CAS  PubMed  Google Scholar 

  48. Baldwin JR, Lewis RC, Phillips BA, Overmyer SK, Hatfield NZ, Narang PK. Dose-independent pharmacokinetics of the cardioprotective agent dexrazoxane in dogs. Biopharm Drug Dispos. 1996;17(6):541–50. https://doi.org/10.1002/(SICI)1099-081X(199608)17:6<541::AID-BDD975>3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  49. Odinecs A, Pereira C, Nosbisch C, Unadkat JD. Prenatal and postpartum pharmacokinetics of stavudine (2',3'-didehydro-3'-deoxythymidine) and didanosine (dideoxyinosine) in pigtailed macaques (Macaca nemestrina). Antimicrob Agents Chemother. 1996;40(10):2423–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harrison LI, Gibaldi M. Pharmacokinetics of digoxin in the rat. Drug Metab Dispos. 1976;4(1):88–93.

    CAS  PubMed  Google Scholar 

  51. Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. A comparison of pharmacokinetics between humans and monkeys. Drug Metab Dispos. 2010;38(2):308–16. https://doi.org/10.1124/dmd.109.028829.

    Article  CAS  PubMed  Google Scholar 

  52. Cook CS, Gwilt PR, Kowalski K, Gupta S, Oppermann J, Karim A. Pharmacokinetics of disopyramide in the dog. Importance of mono-N-dealkylated metabolite kinetics in assessing pharmacokinetic modeling of the parent drug. Drug Metab Dispos. 1990;18(1):42–9.

    CAS  PubMed  Google Scholar 

  53. Wong BK, Bruhin PJ, Barrish A, Lin JH. Nonlinear dorzolamide pharmacokinetics in rats: concentration-dependent erythrocyte distribution and drug-metabolite displacement interaction. Drug Metab Dispos. 1996;24(6):659–63.

    CAS  PubMed  Google Scholar 

  54. Schach von Wittenau M, Twomey TM. The disposition of doxycyline by man and dog. Chemotherapy. 1971;16(4):217–28.

    Article  CAS  PubMed  Google Scholar 

  55. Wong BK, Sahly Y, Mistry G, Waldman S, Musson D, Majumdar A, et al. Comparative disposition of [14C]ertapenem, a novel carbapenem antibiotic, in rat, monkey and man. Xenobiotica. 2004;34(4):379–89. https://doi.org/10.1080/00498250410001670643.

    Article  CAS  PubMed  Google Scholar 

  56. Lin JH, Los LE, Ulm EH, Duggan DE. Urinary excretion kinetics of famotidine in rats. Drug Metab Dispos. 1987;15(2):212–6.

    CAS  PubMed  Google Scholar 

  57. Boom SP, Hoet S, Russel FG. Saturable urinary excretion kinetics of famotidine in the dog. J Pharm Pharmacol. 1997;49(3):288–92.

    Article  CAS  PubMed  Google Scholar 

  58. Kamath AV, Yao M, Zhang Y, Chong S. Effect of fruit juices on the oral bioavailability of fexofenadine in rats. J Pharm Sci. 2005;94(2):233–9. https://doi.org/10.1002/jps.20231.

    Article  CAS  PubMed  Google Scholar 

  59. Forster HJ, Kramer I, Pook KH, Wahl D. Studies on the pharmacokinetics and biotransformation of ipratropium bromide in the rat and dog. Arzneimittel-Forschung. 1976;26(5a):992–1005.

    CAS  PubMed  Google Scholar 

  60. Cabana BE, Taggart JG. Comparative pharmacokinetics of BB-K8 and kanamycin in dogs and humans. Antimicrob Agents Chemother. 1973;3(4):478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mroszczak EJ, Lee FW, Combs D, Sarnquist FH, Huang BL, Wu AT, et al. Ketorolac tromethamine absorption, distribution, metabolism, excretion, and pharmacokinetics in animals and humans. Drug Metab Dispos. 1987;15(5):618–26.

    CAS  PubMed  Google Scholar 

  62. Takubo T, Kato T, Kinami J, Hanada K, Ogata H. Effect of trimethoprim on the renal clearance of lamivudine in rats. J Pharm Pharmacol. 2000;52(3):315–20.

    Article  CAS  PubMed  Google Scholar 

  63. Blaney SM, Daniel MJ, Harker AJ, Godwin K, Balis FM. Pharmacokinetics of lamivudine and BCH-189 in plasma and cerebrospinal fluid of nonhuman primates. Antimicrob Agents Chemother. 1995;39(12):2779–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Benedetti MS, Coupez R, Whomsley R, Nicolas JM, Collart P, Baltes E. Comparative pharmacokinetics and metabolism of levetiracetam, a new anti-epileptic agent, in mouse, rat, rabbit and dog. Xenobiotica. 2004;34(3):281–300. https://doi.org/10.1080/0049825042000196749.

    Article  CAS  PubMed  Google Scholar 

  65. Hemeryck A, Mamidi RN, Bottacini M, Macpherson D, Kao M, Kelley MF. Pharmacokinetics, metabolism, excretion and plasma protein binding of 14C-levofloxacin after a single oral administration in the Rhesus monkey. Xenobiotica. 2006;36(7):597–613. https://doi.org/10.1080/00498250600674436.

    Article  CAS  PubMed  Google Scholar 

  66. Choi YH, Kim SG, Lee MG. Dose-independent pharmacokinetics of metformin in rats: Hepatic and gastrointestinal first-pass effects. J Pharm Sci. 2006;95(11):2543–52. https://doi.org/10.1002/jps.20744.

    Article  CAS  PubMed  Google Scholar 

  67. Fahrig L, Brasch H, Iven H. Pharmacokinetics of methotrexate (MTX) and 7-hydroxymethotrexate (7-OH-MTX) in rats and evidence for the metabolism of MTX to 7-OH-MTX. Cancer Chemother Pharmacol. 1989;23(3):156–60.

    Article  CAS  PubMed  Google Scholar 

  68. Slordal L, Jaeger R, Kjaeve J, Aarbakke J. Pharmacokinetics of 7-hydroxy-methotrexate and methotrexate in the rat. Pharmacol Toxicol. 1988;63(2):81–4.

    Article  CAS  PubMed  Google Scholar 

  69. Lui CY, Lee MG, Chiou WL. Clearance studies of methotrexate in dogs after multiple-rate infusion. Cancer Res. 1985;45(4):1545–8.

    CAS  PubMed  Google Scholar 

  70. Kochak GM, Mason WD. The pharmacokinetics of alpha-methyldopa in dogs. J Pharmacokinet Biopharm. 1985;13(4):405–23.

    Article  CAS  PubMed  Google Scholar 

  71. Jungbluth GL, Jusko WJ. Dose-dependent pharmacokinetics of mezlocillin in rats. Antimicrob Agents Chemother. 1989;33(6):839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Siefert HM, Domdey-Bette A, Henninger K, Hucke F, Kohlsdorfer C, Stass HH. Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: a comparison in humans and other mammalian species. J Antimicrob Chemother. 1999;43(Suppl B):69–76.

    Article  CAS  PubMed  Google Scholar 

  73. Singhvi SM, Heald AF, Murphy BF, DiFazio LT, Schreiber EC, Poutsiaka JW. Disposition of [14C]nadolol in dogs with reversible renal impairment induced by uranyl nitrate. Toxicol Appl Pharmacol. 1978;43(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  74. Hennis PJ, Cronnelly R, Sharma M, Fisher DM, Miller RD. Metabolites of neostigmine and pyridostigmine do not contribute to antagonism of neuromuscular blockade in the dog. Anesthesiology. 1984;61(5):534–9.

    Article  CAS  PubMed  Google Scholar 

  75. Pongchaidecha M, Daley-Yates PT. Clearance and tissue uptake following 4-hour and 24-hour infusions of pamidronate in rats. Drug Metab Dispos. 1993;21(1):100–4.

    CAS  PubMed  Google Scholar 

  76. Upton RA, Nguyen TL, Miller RD, Castagnoli N Jr. Renal and biliary elimination of vecuronium (ORG NC 45) and pancuronium in rats. Anesth Analg. 1982;61(4):313–6.

    Article  CAS  PubMed  Google Scholar 

  77. Scatina JA, Hicks DR, Kraml M, Cayen MN. Metabolic disposition and pharmacokinetics of pelrinone, a new cardiotonic drug, in laboratory animals and man. Eur J Drug Metab Pharmacokinet. 1990;15(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  78. Bergstrom RF, Kay RD, Wagner JG. The pharmacokinetics of penicillamine in a female mongrel dog. J Pharmacokinet Biopharm. 1981;9(5):603–21.

    Article  CAS  PubMed  Google Scholar 

  79. Thummel KE, Shen DD, Isoherranen N, Sminth HE. Design and optimization of dosage regimens; pharmacokinetic data. In: Brunton LL, editor. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: McGraw-Hill; 2006. p. 1787–888.

    Google Scholar 

  80. Khuenl-Brady KS, Sharma M, Chung K, Miller RD, Agoston S, Caldwell JE. Pharmacokinetics and disposition of pipecuronium bromide in dogs with and without ligated renal pedicles. Anesthesiology. 1989;71(6):919–22.

    Article  CAS  PubMed  Google Scholar 

  81. Patterson TA, Li M, Hotchkiss CE, Mauz A, Eddie M, Greischel A, et al. Toxicity assessment of pramipexole in juvenile rhesus monkeys. Toxicology. 2010;276(3):164–71. https://doi.org/10.1016/j.tox.2010.08.002.

    Article  CAS  PubMed  Google Scholar 

  82. McNeil JJ, Mihaly GW, Anderson A, Marshall AW, Smallwood RA, Louis WJ. Pharmacokinetics of the H2- receptor antagonist ranitidine in man. Br J Clin Pharmacol. 1981;12(3):411–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Eddershaw PJ, Chadwick AP, Higton DM, Fenwick SH, Linacre P, Jenner WN, et al. Absorption and disposition of ranitidine hydrochloride in rat and dog. Xenobiotica. 1996;26(9):947–56. https://doi.org/10.3109/00498259609052496.

    Article  CAS  PubMed  Google Scholar 

  84. Boom SP, Meyer I, Wouterse AC, Russel FG. A physiologically based kidney model for the renal clearance of ranitidine and the interaction with cimetidine and probenecid in the dog. Biopharm Drug Dispos. 1998;19(3):199–208.

    Article  CAS  PubMed  Google Scholar 

  85. Beconi MG, Reed JR, Teffera Y, Xia YQ, Kochansky CJ, Liu DQ, et al. Disposition of the dipeptidyl peptidase 4 inhibitor sitagliptin in rats and dogs. Drug Metab Dispos. 2007;35(4):525–32. https://doi.org/10.1124/dmd.106.013110.

    Article  CAS  PubMed  Google Scholar 

  86. Carr RA, Pasutto FM, Foster RT. Influence of cimetidine coadministration on the pharmacokinetics of sotalol enantiomers in an anaesthetized rat model: evidence supporting active renal excretion of sotalol. Biopharm Drug Dispos. 1996;17(1):55–69. https://doi.org/10.1002/(SICI)1099-081X(199601)17:1<55::AID-BDD938>3.0.CO;2-#.

    Article  CAS  PubMed  Google Scholar 

  87. Kaul S, Dandekar KA, Schilling BE, Barbhaiya RH. Toxicokinetics of 2',3'-didehydro-3'-deoxythymidine, stavudine (D4T). Drug Metab Dispos. 1999;27(1):1–12.

    CAS  PubMed  Google Scholar 

  88. Kaul S, Dandekar KA. Pharmacokinetics of the anti-human immunodeficiency virus nucleoside analog stavudine in cynomolgus monkeys. Antimicrob Agents Chemother. 1993;37(5):1160–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sorgel F, Kinzig M. The chemistry, pharmacokinetics and tissue distribution of piperacillin/tazobactam. J Antimicrob Chemother. 1993;(31, Suppl A):39–60.

  90. Cundy KC, Sueoka C, Lynch GR, Griffin L, Lee WA, Shaw JP. Pharmacokinetics and bioavailability of the anti-human immunodeficiency virus nucleotide analog 9-[(R)-2-(phosphonomethoxy)propyl]adenine (PMPA) in dogs. Antimicrob Agents Chemother. 1998;42(3):687–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tegner K, Nilsson HT, Persson CG, Persson K, Ryrfeldt A. Elimination pathways of terbutaline. Eur J Respir Dis Suppl. 1984;134:93–100.

    CAS  PubMed  Google Scholar 

  92. Nilsson HT, Persson CG, Persson K, Tegner K, Ryrfeldt A. The metabolism of terbutaline in dog and rat. Xenobiotica. 1973;3(9):615–23. https://doi.org/10.3109/00498257309151550.

    Article  CAS  PubMed  Google Scholar 

  93. Oh YH, Han HK. Pharmacokinetic interaction of tetracycline with non-steroidal anti-inflammatory drugs via organic anion transporters in rats. Pharmacol Res. 2006;53(1):75–9. https://doi.org/10.1016/j.phrs.2005.09.003.

    Article  CAS  PubMed  Google Scholar 

  94. Davi H, Tronquet C, Caix J, Simiand J, Briot C, Berger Y, et al. Disposition of tiludronate (Skelid) in animals. Xenobiotica. 1999;29(10):1017–31. https://doi.org/10.1080/004982599238083.

    Article  CAS  PubMed  Google Scholar 

  95. Vickers S, Theoharides AD, Arison B, Balani SK, Cui D, Duncan CA, et al. In vitro and in vivo studies on the metabolism of tirofiban. Drug Metab Dispos. 1999;27(11):1360–6.

    CAS  PubMed  Google Scholar 

  96. Mustafa S, Venkatesh P, Pasha K, Mullangi R, Srinivas NR. Altered intravenous pharmacokinetics of topotecan in rats with acute renal failure (ARF) induced by uranyl nitrate: do adenosine A1 antagonists (selective/non-selective) normalize the altered topotecan kinetics in ARF? Xenobiotica. 2006;36(12):1239–58. https://doi.org/10.1080/00498250600839385.

    Article  CAS  PubMed  Google Scholar 

  97. Hodoshima N, Nakano Y, Izumi M, Mitomi N, Nakamura Y, Aoki M, et al. Protective effect of inactive ingredients against nephrotoxicity of vancomycin hydrochloride in rats. Drug Metab Pharmacokinet. 2004;19(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  98. Groen K, Warrander A, Miles GS, Booth BS, Mulder GJ. Sulphation and glucuronidation of xamoterol in the dog: dose dependence and site of sulphation. Xenobiotica. 1988;18(5):511–8. https://doi.org/10.3109/00498258809041688.

    Article  CAS  PubMed  Google Scholar 

  99. Sorensen EV, Faergeman O, Day M, Bastain W. Pharmacokinetics of xamoterol after intravenous and oral administration to patients with chronic heart failure. Eur J Clin Pharmacol. 1988;35(2):183–5.

    Article  CAS  PubMed  Google Scholar 

  100. Oh YH, Han HK. Altered pharmacokinetics of zalcitabine by concurrent use of NSAIDs in rats. Acta Pharmacol Sin. 2006;27(1):119–22. https://doi.org/10.1111/j.1745-7254.2006.00249.x.

    Article  CAS  PubMed  Google Scholar 

  101. de Miranda P, Krasny HC, Page DA, Elion GB. The disposition of acyclovir in different species. J Pharmacol Exp Ther. 1981;219(2):309–15.

    PubMed  Google Scholar 

  102. Krasny HC, de Miranda P, Blum MR, Elion GB. Pharmacokinetics and bioavailability of acyclovir in the dog. J Pharmacol Exp Ther. 1981;216(2):281–8.

    CAS  PubMed  Google Scholar 

  103. Good SS, de Miranda P. Metabolic disposition of acyclovir in the guinea pig, rabbit, and monkey. Am J Med. 1982;73(1A):91–5.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Q, Liu Q, Wu J, Wang C, Peng J, Ma X, et al. PEPT1 involved in the uptake and transepithelial transport of cefditoren in vivo and in vitro. Eur J Pharmacol. 2009;612(1-3):9–14. https://doi.org/10.1016/j.ejphar.2009.03.081.

    Article  CAS  PubMed  Google Scholar 

  105. Barbhaiya RH, Wang L, Shyu WC, Pittman KA. Absolute bioavailability of cefprozil after oral administration in beagles. Antimicrob Agents Chemother. 1992;36(3):687–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Resetarits DE, Bates TR. Apparent dose-dependent absorption of chlorothiazide in dogs. J Pharmacokinet Biopharm. 1979;7(5):463–70.

    Article  CAS  PubMed  Google Scholar 

  107. Gustafson JH, Benet LZ. Saturable kinetics of intravenous chlorothiazide in the rhesus monkey. J Pharmacokinet Biopharm. 1981;9(4):461–76.

    Article  CAS  PubMed  Google Scholar 

  108. Nouaille-Degorce B, Veau C, Dautrey S, Tod M, Laouari D, Carbon C, et al. Influence of renal failure on ciprofloxacin pharmacokinetics in rats. Antimicrob Agents Chemother. 1998;42(2):289–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Abadia AR, Aramayona JJ, Munoz MJ, Pla Delfina JM, Saez MP, Bregante MA. Disposition of ciprofloxacin following intravenous administration in dogs. J Vet Pharmacol Ther. 1994;17(5):384–8.

    Article  CAS  PubMed  Google Scholar 

  110. Kusajima H, Ishikawa N, Machida M, Uchida H, Irikura T. Pharmacokinetics of a new quinolone, AM-833, in mice, rats, rabbits, dogs, and monkeys. Antimicrob Agents Chemother. 1986;30(2):304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim SH, Choi YM, Lee MG. Pharmacokinetics and pharmacodynamics of furosemide in protein-calorie malnutrition. J Pharmacokinet Biopharm. 1993;21(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  112. Park JH, Lee WI, Yoon WH, Park YD, Lee JS, Lee MG. Pharmacokinetic and pharmacodynamic changes of furosemide after intravenous and oral administration to rats with alloxan-induced diabetes mellitus. Biopharm Drug Dispos. 1998;19(6):357–64.

    Article  CAS  PubMed  Google Scholar 

  113. Data JL, Rane A, Gerkens J, Wilkinson GR, Nies AS, Branch RA. The influence of indomethacin on the pharmacokinetics, diuretic response and hemodynamics of furosemide in the dog. J Pharmacol Exp Ther. 1978;206(2):431–8.

    CAS  PubMed  Google Scholar 

  114. Kozutsumi D, Kawashima A, Sugimoto T, Kotohda Y, Fujimori S, Takami M, et al. Pharmacokinetics of 9alpha-fluoromedroxyprogesterone acetate in rats: comparison with medroxyprogesterone acetate. Biopharm Drug Dispos. 1999;20(6):277–84.

    Article  CAS  PubMed  Google Scholar 

  115. Harrison MP, Moss SR, Featherstone A, Fowkes AG, Sanders AM, Case DE. The disposition and metabolism of meropenem in laboratory animals and man. J Antimicrob Chemother. 1989;24(Suppl A):265–77.

    Article  CAS  PubMed  Google Scholar 

  116. Wang X, Morris ME. Effects of the flavonoid chrysin on nitrofurantoin pharmacokinetics in rats: potential involvement of ABCG2. Drug Metab Dispos. 2007;35(2):268–74. https://doi.org/10.1124/dmd.106.011684.

    Article  CAS  PubMed  Google Scholar 

  117. Øie S. Effect of 4-N-acetyl-sulfisoxazole on the disposition of sulfisoxazole in the rat. Int J Pharm. 1979;3(6):311–8. https://doi.org/10.1016/0378-5173(79)90123-6.

    Article  Google Scholar 

  118. Christensen S. The biological fate of riboflavin in mammals. A survey of literature and own investigations. Acta Pharmacol Toxicol (Copenh). 1973;32:3–72.

    CAS  PubMed  Google Scholar 

  119. Mostafavi SA, Foster RT. Pharmacokinetics of single oral and multiple intravenous and oral administration of acebutolol enantiomers in a rat model. Biopharm Drug Dispos. 1998;19(7):425–31. https://doi.org/10.1002/(sici)1099-081x(199810)19:7<425::aid-bdd121>3.0.co;2-x.

    Article  CAS  PubMed  Google Scholar 

  120. Bae SK, Yang KH, Aryal DK, Kim YG, Lee MG. Pharmacokinetics of amitriptyline and one of its metabolites, nortriptyline, in rats: little contribution of considerable hepatic first-pass effect to low bioavailability of amitriptyline due to great intestinal first-pass effect. J Pharm Sci. 2009;98(4):1587–601. https://doi.org/10.1002/jps.21511.

    Article  CAS  PubMed  Google Scholar 

  121. Aldridge A, Neims AH. The effects of phenobarbital and beta-naphthoflavone on the elimination kinetics and metabolite pattern of caffeine in the beagle dog. Drug Metab Dispos. 1979;7(6):378–82.

    CAS  PubMed  Google Scholar 

  122. Peets EA, Weinstein R, Billard W, Symchowicz S. The metabolism of chlorpheniramine maleate in the dog and rat. Arch Int Pharmacodyn Ther. 1972;199(1):172–90.

    CAS  PubMed  Google Scholar 

  123. McIntosh MP, Leong N, Katneni K, Morizzi J, Shackleford DM, Prankerd RJ. Impact of chlorpromazine self-association on its apparent binding constants with cyclodextrins: Effect of SBE(7)-beta-CD on the disposition of chlorpromazine in the rat. J Pharm Sci. 2010;99(7):2999–3008. https://doi.org/10.1002/jps.22064.

    Article  CAS  PubMed  Google Scholar 

  124. Sawada Y, Hanano M, Sugiyama Y, Iga T. Prediction of the disposition of nine weakly acidic and six weakly basic drugs in humans from pharmacokinetic parameters in rats. J Pharmacokinet Biopharm. 1985;13(5):477–92. https://doi.org/10.1007/BF01059331.

    Article  CAS  PubMed  Google Scholar 

  125. Salzman NP, Moran NC, Brodie BB. Identification and pharmacological properties of a major metabolite of chlorpromazine. Nature. 1955;176(4493):1122–3. https://doi.org/10.1038/1761122a0.

    Article  CAS  PubMed  Google Scholar 

  126. Keyler DE, Le Couteur DG, Pond SM, St Peter JV, Pentel PR. Effects of specific antibody Fab fragments on desipramine pharmacokinetics in the rat in vivo and in the isolated, perfused liver. J Pharmacol Exp Ther. 1995;272(3):1117–23.

    CAS  PubMed  Google Scholar 

  127. van der Klejin E, van Rossum JM, Muskens ET, Rijntjes NV. Pharmacokinetics of diazepam in dogs, mice and humans. Acta Pharmacol Toxicol (Copenh). 1971;29(Suppl 3):109–27. https://doi.org/10.1111/j.1600-0773.1971.tb03291.x.

    Article  PubMed  Google Scholar 

  128. Sugawara Y, Nakamura S, Usuki S, Ito Y, Suzuki T, Ohashi M, et al. Metabolism of diltiazem. II. Metabolic profile in rat, dog and man. J Pharmacobiodyn. 1988;11(4):224–33. https://doi.org/10.1248/bpb1978.11.224.

    Article  CAS  PubMed  Google Scholar 

  129. Yeung PK, Feng JD, Buckley SJ. Effect of administration route and length of exposure on pharmacokinetics and metabolism of diltiazem in dogs. Drug Metabol Drug Interact. 2001;18(3-4):251–62. https://doi.org/10.1515/dmdi.2001.18.3-4.251.

    Article  CAS  PubMed  Google Scholar 

  130. Tocco DJ. deLuna FA, Duncan AE, Vassil TC, Ulm EH. The physiological disposition and metabolism of enalapril maleate in laboratory animals. Drug Metab Dispos. 1982;10(1):15–9.

    CAS  PubMed  Google Scholar 

  131. Lin TH, Sawada Y, Sugiyama Y, Iga T, Hanano M. Effect of phenobarbitone on the distribution and elimination of imipramine in rats. J Pharm Pharmacol. 1985;37(10):735–8. https://doi.org/10.1111/j.2042-7158.1985.tb04955.x.

    Article  CAS  PubMed  Google Scholar 

  132. Coutinho CB, Spiegel HE, Kaplan SA, Yu M, Christian RP, Carbone JJ, et al. Kinetics of absorption and excretion of levodopa in dogs. J Pharm Sci. 1971;60(7):1014–8. https://doi.org/10.1002/jps.2600600703.

    Article  CAS  PubMed  Google Scholar 

  133. Keenaghan JB, Boyes RN. The tissue distribution, metabolism and excretion of lidocaine in rats, guinea pigs, dogs and man. J Pharmacol Exp Ther. 1972;180(2):454–63.

    CAS  PubMed  Google Scholar 

  134. Murthy SS, Nelson WL, Shen DD, Power JM, Cahill CM, McLean AJ. Pharmacokinetic interaction between verapamil and metoprolol in the dog. Stereochemical aspects. Drug Metab Dispos. 1991;19(6):1093–100.

    CAS  PubMed  Google Scholar 

  135. Kamimura H, Koga N, Oguri K, Yoshimura H. Enhanced elimination of theophylline, phenobarbital and strychnine from the bodies of rats and mice by squalane treatment. J Pharmacobiodyn. 1992;15(5):215–21. https://doi.org/10.1248/bpb1978.15.215.

    Article  CAS  PubMed  Google Scholar 

  136. Sarhan F, Engasser JM, Batt AM, Magdalou J, Siest G. Effect of diphenylhydantoin and its main hydroxylated metabolite on the pharmacokinetics and the urinary and biliary excretion of phenobarbital and its p-hydroxy metabolite. Eur J Drug Metab Pharmacokinet. 1981;6(2):99–108. https://doi.org/10.1007/BF03189475.

    Article  CAS  PubMed  Google Scholar 

  137. Taylor JA, Twomey TM, von Wittenau MS. The metabolic fate of prazosin. Xenobiotica. 1977;7(6):357–64. https://doi.org/10.3109/00498257709035794.

    Article  CAS  PubMed  Google Scholar 

  138. Wu WM, Tang Y, Buchwald P, Bodor N. Pharmacokinetics and delta1-cortienic acid excretion after intravenous administration of prednisolone and loteprednol etabonate in rats. Pharmazie. 2010;65(6):412–6.

    CAS  PubMed  Google Scholar 

  139. Chow HH, Lalka D. The influence of vitamin K3 treatment on the pharmacokinetics and metabolism of (+)-propranolol in the rat. Drug Metab Dispos. 1992;20(2):288–94.

    CAS  PubMed  Google Scholar 

  140. Kwong EC, Laganiere S, Savitch JL, Nelson WL, Shen DD. Alteration in the disposition and metabolism of S(-)-propranolol in rats with active respiratory viral infection. Life Sci. 1988;42(12):1245–52. https://doi.org/10.1016/0024-3205(88)90556-5.

    Article  CAS  PubMed  Google Scholar 

  141. Vu VT, Bai SA, Abramson FP. Interactions of phenobarbital with propranolol in the dog. 2. Bioavailability, metabolism and pharmacokinetics. J Pharmacol Exp Ther. 1983;224(1):55–61.

    CAS  PubMed  Google Scholar 

  142. Sitar DS, Thornhill DP. Propylthiouracil: absorption, metabolism and excretion in the albino rat. J Pharmacol Exp Ther. 1972;183(2):440–8.

    CAS  PubMed  Google Scholar 

  143. Giles HG, Roberts EA, Orrego H, Sellers EM. Disposition of intravenous propylthiouracil. J Clin Pharmacol. 1981;21(11):466–71. https://doi.org/10.1002/j.1552-4604.1981.tb05651.x.

    Article  CAS  PubMed  Google Scholar 

  144. Watari N, Wakamatsu A, Kaneniwa N. Comparison of disposition parameters of quinidine and quinine in the rat. J Pharmacobiodyn. 1989;12(10):608–15. https://doi.org/10.1248/bpb1978.12.608.

    Article  CAS  PubMed  Google Scholar 

  145. Fremstad D, Jacobsen S, Lunde KM. Influence of serum protein binding on the pharmacokinetics of quinidine in normal and anuric rats. Acta Pharmacol Toxicol (Copenh). 1977;41(2):161–76. https://doi.org/10.1111/j.1600-0773.1977.tb02136.x.

    Article  CAS  PubMed  Google Scholar 

  146. Rakhit A, Guentert TW, Holford NH, Verhoeven J, Riegelman S. Pharmacokinetics and pharmacodynamics of quinidine and its metabolite, quinidine-N-oxide, in beagle dogs. Eur J Drug Metab Pharmacokinet. 1984;9(4):315–24. https://doi.org/10.1007/BF03189683.

    Article  CAS  PubMed  Google Scholar 

  147. Dixon CM, Saynor DA, Andrew PD, Oxford J, Bradbury A, Tarbit MH. Disposition of sumatriptan in laboratory animals and humans. Drug Metab Dispos. 1993;21(5):761–9.

    CAS  PubMed  Google Scholar 

  148. Yang SH, Suh JH, Lee MG. Pharmacokinetic interaction between tamoxifen and ondansetron in rats: non-competitive (hepatic) and competitive (intestinal) inhibition of tamoxifen metabolism by ondansetron via CYP2D subfamily and 3A1/2. Cancer Chemother Pharmacol. 2010;65(3):407–18. https://doi.org/10.1007/s00280-009-1043-4.

    Article  CAS  PubMed  Google Scholar 

  149. Nadai M, Kato M, Yasui K, Kimura M, Zhao YL, Ueyama J, et al. Lack of effect of aciclovir on metabolism of theophylline and expression of hepatic cytochrome P450 1A2 in rats. Biol Pharm Bull. 2007;30(3):562–8. https://doi.org/10.1248/bpb.30.562.

    Article  CAS  PubMed  Google Scholar 

  150. Saunier C, du Souich P, Hartemann D, Sautegeau A. Theophylline disposition during acute and chronic hypoxia in the conscious dog. Res Commun Chem Pathol Pharmacol. 1987;57(3):291–9.

    CAS  PubMed  Google Scholar 

  151. Kuze T, Miyazaki H, Taneike T. Theophylline: pharmacokinetics, metabolism and urinary excretion in dogs. Nihon Yakurigaku Zasshi. 1988;91(5):325–34. https://doi.org/10.1254/fpj.91.325.

    Article  CAS  PubMed  Google Scholar 

  152. Han SY, Choi YH. Pharmacokinetic Interaction between Metformin and Verapamil in Rats: Inhibition of the OCT2-Mediated Renal Excretion of Metformin by Verapamil. Pharmaceutics. 2020;12(5). https://doi.org/10.3390/pharmaceutics12050468.

  153. Maeng HJ, Doan TNK, Yoon IS. Differential regulation of intestinal and hepatic CYP3A by 1alpha,25-dihydroxyvitamin D3: Effects on in vivo oral absorption and disposition of buspirone in rats. Drug Dev Res. 2019;80(3):333–42. https://doi.org/10.1002/ddr.21505.

    Article  CAS  PubMed  Google Scholar 

  154. Lee YS, Kim YW, Kim SG, Lee I, Lee MG, Kang HE. Effects of poloxamer 407-induced hyperlipidemia on the pharmacokinetics of carbamazepine and its 10,11-epoxide metabolite in rats: Impact of decreased expression of both CYP3A1/2 and microsomal epoxide hydrolase. Eur Neuropsychopharmacol. 2012;22(6):431–40. https://doi.org/10.1016/j.euroneuro.2011.10.004.

    Article  CAS  PubMed  Google Scholar 

  155. Levy RH, Lockard JS, Green JR, Friel P, Martis L. Pharmacokinetics of carbamazepine in monkeys following intravenous and oral administration. J Pharm Sci. 1975;64(2):302–7. https://doi.org/10.1002/jps.2600640224.

    Article  CAS  PubMed  Google Scholar 

  156. Peris-Ribera JE, Torres-Molina F, Garcia-Carbonell MC, Aristorena JC, Pla-Delfina JM. Pharmacokinetics and bioavailability of diclofenac in the rat. J Pharmacokinet Biopharm. 1991;19(6):647–65. https://doi.org/10.1007/BF01080872.

    Article  CAS  PubMed  Google Scholar 

  157. Tocco DJ, Breault GO, Zacchei AG, Steelman SL, Perrier CV. Physiological disposition and metabolism of 5-(2',4'-difluorophenyl)salicyclic acid, a new salicylate. Drug Metab Dispos. 1975;3(6):453–66.

    CAS  PubMed  Google Scholar 

  158. Dickinson RG, King AR, Verbeeck RK. Elimination of diflunisal as its acyl glucuronide, phenolic glucuronide and sulfate conjugates in bile-exteriorized and intact rats. Clin Exp Pharmacol Physiol. 1989;16(12):913–24. https://doi.org/10.1111/j.1440-1681.1989.tb02402.x.

    Article  CAS  PubMed  Google Scholar 

  159. Meuldermans W, Hurkmans R, Swysen E, Hendrickx J, Michiels M, Lauwers W, et al. On the pharmacokinetics of domperidone in animals and man III. Comparative study on the excretion and metabolism of domperidone in rats, dogs and man. Eur J Drug Metab Pharmacokinet. 1981;6(1):49–60. https://doi.org/10.1007/BF03189515.

    Article  CAS  PubMed  Google Scholar 

  160. Lin C, Symchowicz S. Absorption, distribution, metabolism, and excretion of griseofulvin in man and animals. Drug Metab Rev. 1975;4(1):75–95. https://doi.org/10.3109/03602537508993749.

    Article  CAS  PubMed  Google Scholar 

  161. Dietzel K, Beck WS, Schneider HT, Geisslinger G, Brune K. The biliary elimination and enterohepatic circulation of ibuprofen in rats. Pharm Res. 1990;7(1):87–90. https://doi.org/10.1023/a:1015847912059.

    Article  CAS  PubMed  Google Scholar 

  162. Beck WS, Geisslinger G, Engler H, Brune K. Pharmacokinetics of ibuprofen enantiomers in dogs. Chirality. 1991;3(3):165–9. https://doi.org/10.1002/chir.530030304.

    Article  CAS  PubMed  Google Scholar 

  163. Meunier CJ, Verbeeck RK. Glucuronidation kinetics of R,S-ketoprofen in adjuvant-induced arthritic rats. Pharm Res. 1999;16(7):1081-1086. doi: https://doi.org/10.1023/a:1018996018708.

  164. Denissen JF, Grabowski BA, Johnson MK, Buko AM, Kempf DJ, Thomas SB, et al. Metabolism and disposition of the HIV-1 protease inhibitor ritonavir (ABT-538) in rats, dogs, and humans. Drug Metab Dispos. 1997;25(4):489–501.

    CAS  PubMed  Google Scholar 

  165. Takada K, Usuda H, Oh-Hashi M, Yoshikawa H, Muranishi S, Tanaka H. Pharmacokinetics of FK-506, a novel immunosuppressant, after intravenous and oral administrations to rats. J Pharmacobiodyn. 1991;14(1):34–42. https://doi.org/10.1248/bpb1978.14.34.

    Article  CAS  PubMed  Google Scholar 

  166. Venkataramanan R, Warty VS, Zemaitis MA, Sanghvi AT, Burckart GJ, Seltman H, et al. Biopharmaceutical aspects of FK-506. Transplant Proc. 1987;19(5 Suppl 6):30–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Leeson GA, Chan KY, Knapp WC, Biedenbach SA, Wright GJ, Okerholm RA. Metabolic disposition of terfenadine in laboratory animals. Arzneimittel-Forschung. 1982;32(9a):1173–8.

    CAS  PubMed  Google Scholar 

  168. Fagerholm U. Prediction of human pharmacokinetics - renal metabolic and excretion clearance. J Pharm Pharmacol. 2007;59(11):1463–71. https://doi.org/10.1211/jpp.59.11.0002.

    Article  CAS  PubMed  Google Scholar 

  169. Srinivas NR. Interspecies scaling of excretory amounts using allometry - retrospective analysis with rifapentine, aztreonam, carumonam, pefloxacin, miloxacin, trovafloxacin, doripenem, imipenem, cefozopran, ceftazidime, linezolid for urinary excretion and rifapentine, cabotegravir, and dolutegravir for fecal excretion. Xenobiotica. 2016;46(9):784–92. https://doi.org/10.3109/00498254.2015.1121554.

    Article  CAS  PubMed  Google Scholar 

  170. Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos. 2013;41(12):1975–93. https://doi.org/10.1124/dmd.113.054031.

    Article  CAS  PubMed  Google Scholar 

  171. Lombardo F, Waters NJ, Argikar UA, Dennehy MK, Zhan J, Gunduz M, et al. Comprehensive assessment of human pharmacokinetic prediction based on in vivo animal pharmacokinetic data, part 2: clearance. J Clin Pharmacol. 2013;53(2):178–91. https://doi.org/10.1177/0091270012440282.

    Article  CAS  PubMed  Google Scholar 

  172. Mahmood I. Interspecies scaling of renally secreted drugs. Life Sci. 1998;63(26):2365–71. https://doi.org/10.1016/s0024-3205(98)00525-6.

    Article  CAS  PubMed  Google Scholar 

  173. Paine SW, Ménochet K, Denton R, McGinnity DF, Riley RJ. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption. Drug Metab Dispos. 2011;39(6):1008–13. https://doi.org/10.1124/dmd.110.037267.

    Article  CAS  PubMed  Google Scholar 

  174. Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci. 2013;102(1):34–42. https://doi.org/10.1002/jps.23359.

    Article  CAS  PubMed  Google Scholar 

  175. Varma MV, Gardner I, Steyn SJ, Nkansah P, Rotter CJ, Whitney-Pickett C, et al. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 2012;9(5):1199–212. https://doi.org/10.1021/mp2004912.

    Article  CAS  PubMed  Google Scholar 

  176. Pham-The H, Garrigues T, Bermejo M, Gonzalez-Alvarez I, Monteagudo MC, Cabrera-Perez MA. Provisional classification and in silico study of biopharmaceutical system based on caco-2 cell permeability and dose number. Mol Pharm. 2013;10(6):2445–61. https://doi.org/10.1021/mp4000585.

    Article  CAS  PubMed  Google Scholar 

  177. Varma MV, Feng B, Obach RS, Troutman MD, Chupka J, Miller HR, et al. Physicochemical determinants of human renal clearance. J Med Chem. 2009;52(15):4844–52. https://doi.org/10.1021/jm900403j.

    Article  CAS  PubMed  Google Scholar 

  178. Cruciani G, Crivori P, Carrupt PA, Testa B. Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. Journal of Molecular Structure: THEOCHEM. 2000;503(1):17–30. https://doi.org/10.1016/S0166-1280(99)00360-7.

    Article  CAS  Google Scholar 

  179. Crivori P, Cruciani G, Carrupt PA, Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem. 2000;43(11):2204–16. https://doi.org/10.1021/jm990968+.

    Article  CAS  PubMed  Google Scholar 

  180. Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6(4):317–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding statement

CMR was partially supported by award #T32GM007546 from the National Institutes of General Medical Sciences and the Eunice Kennedy Shriver National Institute of Child Health & Human Development. NOB is supported by Award Number T32GM008425 from the National Institute of General Medical Sciences.

Data availability statement

All data generated or analyzed during this study are included in this article.

Author information

Authors and Affiliations

Authors

Contributions

Original study conception and design was completed by Leslie Benet, Connie Remsberg, and Chelsea Hosey. The literature review and data analysis were performed by Nadia Bamfo, Connie Remsberg, and Chelsea Hosey. The initial draft of the manuscript was written by Nadia Bamfo and Connie Remsberg and critically revised by Chelsea Hosey and Leslie Benet.

Corresponding author

Correspondence to Connie M. Remsberg.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamfo, N.O., Hosey-Cojocari, C., Benet, L.Z. et al. Examination of Urinary Excretion of Unchanged Drug in Humans and Preclinical Animal Models: Increasing the Predictability of Poor Metabolism in Humans. Pharm Res 38, 1139–1156 (2021). https://doi.org/10.1007/s11095-021-03076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03076-y

KEY WORDS

Navigation