Skip to main content

Advertisement

Log in

Synthesis and characterization of a bi-functionalized lithium cobalt iron oxide/graphene nano-architectured composite material for electrochemical sensing of dopamine and as cathode in lithium-ion battery

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, we have introduced a simple method for developing the lithium cobalt iron oxide (Li0.3CoFe2O4, LCFO) nanoparticles by sol–gel and solid-state sintering methods using lithium nitrate, cobalt nitrate hexahydrate, and iron oxide as precursors. The electrochemical performance of LCFO was further improved by combining graphene (LCFO-Gr). The synthesized LCFO-Gr nanocomposite exhibited cubic face-centered structure with an average particle-size distribution of 26 nm as estimated from XRD, FESEM, and TEM studies. A novel electrochemical sensor was fabricated by placing LCFO-Gr nanocomposite on the surface of glassy carbon electrode by drop-casting method, which demonstrated superior electrocatalytic activity, sensitivity, and selectivity towards the determination of dopamine. Additionally, as a cathode material, it delivered high discharge capacity of 153 mAh g−1 with good cycling stability, suggesting LCFO-Gr nanocomposite as a prominent material for the next-generation lithium-ion batteries.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu X, Shangguan E, Li J, Ning S, Guo L, Li Q (2017) Mater Sci Eng C 70:628

    Article  CAS  Google Scholar 

  2. Zhu X, Liang Y, Zuo X, Hu R, Xiao X, Nan J (2014) Electrochim Acta 143:366

    Article  CAS  Google Scholar 

  3. Zhang L, Yuan WJ, Hou BQ (2013) J Electroanal Chem 689:135

    Article  CAS  Google Scholar 

  4. Salamon J, Kumar YS, Ramachandran K, Lee YS, Yoo DJ, Kim AR, Kumar GG (2015) Biosens Bioelectron 64:269

    Article  CAS  PubMed  Google Scholar 

  5. Zou C, Zhong J, Li S, Wang H, Wang J, Yan B, Yukou D (2017) J Electroanal Chem 805:110

    Article  CAS  Google Scholar 

  6. Alothmana ZA, Bukharia N, Wabaidura SM, Haider S (2010) Sens Actuators B 146:314

    Article  CAS  Google Scholar 

  7. Xueyan L, Xiaojing L, Xianwen K (2017) J Electroanal Chem 799:451

    Article  CAS  Google Scholar 

  8. Huai YW, Yue S, Bo T (2002) Talanta 57:899

    Article  Google Scholar 

  9. Teresa MO, Andrew GE (1990) J Neurosci Methods 34:11

    Article  Google Scholar 

  10. Lihe Z, Norio T, Takashi H, Makoto K, Takuji K (1999) Talanta 50:677

    Article  Google Scholar 

  11. Donita LR, Andre H, Andrew TS, Wightman RM (2008) Chem Rev 108:554

    Google Scholar 

  12. Katariina V, Heli S, Ulla K (2003) J Chromatogr B 788:277

    Article  CAS  Google Scholar 

  13. Yaping Z, Hongling Y, Qingji X, Siyu H, Jiali L, Zou L, Ming M, Shouzhuo Y (2013) Analyst 138:7246

    Article  CAS  Google Scholar 

  14. Qian LZ, Jin-Xia F, Ai-Jun W, Jie W, Zhang YL, Feng JJ (2015) Microchim Acta 182:589

    Article  CAS  Google Scholar 

  15. Kaveh M, Hadi B, Mohammad RG, Parviz N (2017) Microchim Acta 184:3281

    Article  CAS  Google Scholar 

  16. Andreea C, Mihaela T, Robert S, Fethi B, Alexandru C, Cecilia C (2015) Anal Chim Acta 886:16

    Article  CAS  Google Scholar 

  17. Balram A, Maduraiveeran G, Aicheng C (2015) Electrochim Acta 162:198

    Article  CAS  Google Scholar 

  18. Shenghai Z, Hongmin W, Ying W, Hongyan S, Xun F, Hao H, Jin L, Wenbo S (2013) Electrochim Acta 112:90

    Article  CAS  Google Scholar 

  19. Behpour M, Masoum S, Meshki MJ (2013) Nanostructure 3:243

    Google Scholar 

  20. Ruiyi L, Tingting Y, Zaijun L, Zhiguo G, Guangli W, Junkang L (2017) Anal Chim Acta 954:43

    Article  CAS  Google Scholar 

  21. Dan W, Yuyang L, Yong Z, Panpan W, Qin W, Bin D (2014) Electrochim Acta 116:244

    Article  CAS  Google Scholar 

  22. Meimei C, Xin Z, Mingxia W, Huayu H, Junjie M (2017) J Electroanal Chem 786:1

    Article  CAS  Google Scholar 

  23. Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M (2008) Electrochem Solid State Lett 11:A183

    Article  CAS  Google Scholar 

  24. Li S, Cen Y, Xiang Q, Aslam MK, Hu B, Li W, Tang Y, Yu Q, Liu Y, Chen C (2019) J Mater Chem A 7:1658

    Article  CAS  Google Scholar 

  25. Bahgat M, Farghaly FE, Abdel Basir SM, Fouad OA (2007) J Mater Process Technol 183:117

    Article  CAS  Google Scholar 

  26. Xia H, Zhu D, Fu Y, Wang X (2012) Electrochim Acta 83:166

    Article  CAS  Google Scholar 

  27. Wu L, Xiao Q, Li Z, Lei G, Zhang P, Wang L (2012) Solid State Ion 215:24

    Article  CAS  Google Scholar 

  28. Sagadevan S, Marlinda AR, Johan MR, Umar A, Fouad H, Alothman OY, Khaled U, Akhtar MS, Shahid MM (2019) J Colloid Interface Sci 558:68

    Article  CAS  PubMed  Google Scholar 

  29. Qiu HJ, Liu L, Mu YP, Zhang HJ, Wang Y (2015) Nano Res 8:321

    Article  CAS  Google Scholar 

  30. Li S, Wang B, Liu J, Yu M (2014) Electrochim Acta 129:33

    Article  CAS  Google Scholar 

  31. Lee E, Salgado RA, Lee B, Sumant AV, Rajh T, Johnson C, Balandin AA, Shevchenko EV (2018) Carbon 129:702

    Article  CAS  Google Scholar 

  32. Lee C, Kim SK, Choi JH, Chang H, Jang HD (2018) J Alloys Compd 735:2030

    Article  CAS  Google Scholar 

  33. Gong Y, Ding W, Li Z, Su R, Zhang X, Wang J, Zhou J, Wang Z, Gao Y, Li S, Guan P, Wei Z, Sun C (2018) ACS Catal 8:4082

    Article  CAS  Google Scholar 

  34. Aslam MK, Shah SSA, Najam T, Li S, Chen CG (2019) J Appl Electrochem 49:433

    Article  CAS  Google Scholar 

  35. Yuanxiang G, Dairong C, Xiuling J (2005) J Phys Chem B 109:17901

    Article  CAS  Google Scholar 

  36. Vagmare G, Chiliveri S, Guduru P (2018) Trans Indian Ceram Soc 77:1

    Article  Google Scholar 

  37. Yi TF, Xie Y, Jiang LJ, Shu J, Yue CB, Zhou AN, Ye MF (2012) RSC Adv 2:3541

    Article  CAS  Google Scholar 

  38. Ouyang CY, Zhong ZY, Lei MS (2007) Electrochem Commun 9:1107

    Article  CAS  Google Scholar 

  39. Zhu GN, Wang YG, Xia YY (2012) Energy Environ Sci 5:6652

    Article  CAS  Google Scholar 

  40. Yi TF, Jiang LJ, Shu J, Yue CB, Zhu RS, Qiao HB (2010) J Phys Chem Solids 71:1236

    Article  CAS  Google Scholar 

  41. Wang L, Zhang Y, Guo H, Li J, Stach EA, Tong X, Takeuchi ES, Takeuchi KJ, Liu P, Marschilok AC, Wong SS (2018) Chem Mater 30:671

    Article  CAS  Google Scholar 

  42. Guixia L, Jiurong L, Weibo H, Xinzhen W, Fenglong W (2019) Appl Organomet Chem 33:4957

    Google Scholar 

  43. Ying W, Yueming L, Longhua T, Jin L, Jinghong L (2009) Electrochem Commun 11:889

    Article  CAS  Google Scholar 

  44. Fatima TJ, Jee WL, Woo GJ (2014) J Ind Eng Chem 20:2883

    Article  CAS  Google Scholar 

  45. Shixin W, Qiyuan H, Chaoliang T, Yadong W, Hua Z (2013) Small 9:1160

    Article  CAS  Google Scholar 

  46. Kesong H, Kulkarni DD, Ikjun C, Vladimir VT (2014) Prog Polym Sci 39:1934

    Article  CAS  Google Scholar 

  47. Shubin Y, Guanglei C, Shuping P, Qian C, Ute K, Xinliang F, Joachim M, Klaus M (2010) Chemsuschem 3:36

    Google Scholar 

  48. Jeong HB, Jae HP, Yoon YK, Jungho H (2009) Nanoscale 1:339

    Article  CAS  Google Scholar 

  49. Yuejiao C, Jian Z, Baihua Q, Bingan L, Zhi X (2014) Nano Energy 3:88

    Article  CAS  Google Scholar 

  50. Lemine OM (2009) Superlattices Microstruct 45:576

    Article  CAS  Google Scholar 

  51. Ambadi LN, Dhananjaya M, Prakash NG, Hussain OM, Mauger A, Christian MJ (2018) ChemistrySelect 3:9150

    Article  CAS  Google Scholar 

  52. Mamta R, Pankaj G, Rajendra NG, Yoon BS (2017) Sens Actuators B 239:993

    Article  CAS  Google Scholar 

  53. Manjunatha JG, Kumara Swamy BE, Mamatha GP, Chandra U, Niranjana E, Sherigara BS (2009) Int J Electrochem Sci 4:187

    CAS  Google Scholar 

  54. Qingxiang W, Yuhua W, Shengyun L, Liheng W, Feng G, Fei G, Wei S (2012) Thin Solid Films 520:4459

    Article  CAS  Google Scholar 

  55. Lu Y, Dong L, Jianshe H, Tianyan Y (2014) Sens Actuators B 193:166

    Article  CAS  Google Scholar 

  56. Yang F, Jin-Hang L, Chun-Peng Y, Meng Y, Peng L (2011) Sens Actuators B 157:669

    Article  CAS  Google Scholar 

  57. Yang F, Jin-Hang L, Hai-Ting L, Qin Z (2011) Colloids Surf B 85:289

    Article  CAS  Google Scholar 

  58. Ivanishchev AV, Bobrikov IA, Ivanishcheva IA, Ivanshina OY (2018) J Electroanal Chem 821:140

    Article  CAS  Google Scholar 

  59. Ivanishchev AV, Gridina NA, Rybakov KS, Ivanishcheva IA, Ambesh D (2020) J Electroanal Chem 860:113894

    Article  CAS  Google Scholar 

  60. Lakshmi NA, Dhananjaya M, Guru PN, Hussain OM, Julien CM (2017) Ionics 23:3419

    Article  CAS  Google Scholar 

  61. Jun Y, Shi L, Zhenqin Z, Guangwu H, Ping Z, Haiying L, Lulu T, Xuemin Z, Huijun J (2013) Colloids Surf B 111:392

    Article  CAS  Google Scholar 

  62. Balamurugan D, Muniyandi R, Shen-Ming C (2014) Colloids Surf B 116:674

    Article  CAS  Google Scholar 

  63. Fengyuan Z, Yongjie L, Yong G, Zaihua W, Chunming W (2011) Microchim Acta 173:103

    Article  CAS  Google Scholar 

  64. Venkataprasad G, Madhusudana Reddy T, Lakshmi Narayana A, Hussain OM, Shaikshavali P, Venu Gopal T, Gopal P (2019) Sens Actuators A 293:87

    Article  CAS  Google Scholar 

  65. Anindya N, Arkadeep M, Subhas CM (2018) Sens Actuators A 270:177

    Article  CAS  Google Scholar 

  66. Daban L, Yan Z, Letao W, Shaoxiong L, Chunming W, Xiaofeng C (2012) Talanta 88:181

    Article  CAS  Google Scholar 

  67. Carlos Alberto MH, Monica CL, Marco AQ (2009) Mater Res 12:375

    Article  Google Scholar 

  68. Shaikshavali P, Madhusudana RT, Palakollu VN, Karpoormath R, Subba Rao Y, Venkataprasad G, VenuGopal T, Gopal P (2019) Synth Met 252:29

    Article  CAS  Google Scholar 

  69. Churikov AV, Kachibaya EI, Sycheva VO, Ivanishcheva IA, Imnadz RI, Paikidze TV, Ivanishchev AV (2009) Russ J Electrochem 45:175

    Article  CAS  Google Scholar 

  70. Ivanishchev AV, Churikov AV, Ivanishcheva IA, Ushakov AV (2016) Ionics 22:483

    Article  CAS  Google Scholar 

  71. Xuan Z, Yi-Chi Z, Li-Xia M (2016) Sens Actuators B 227:488

    Article  CAS  Google Scholar 

  72. Gopal P, Madhusudana Reddy T, Reddaiah K, Raghu P, Narayana PV (2013) J Mol Liq 178:168

    Article  CAS  Google Scholar 

  73. Wei S, Xiuzheng W, Yuhua W, Xiaomei J, Li X, Guangjiu L, Zhenfan S (2013) Electrochim Acta 87:317

    Article  CAS  Google Scholar 

  74. Yang RK, Sungyool B, Yeon JK, Yongtak Y, Rakesh KM, Jong SK, Hasuck K (2010) Biosens Bioelectron 25:2366

    Article  PubMed  CAS  Google Scholar 

  75. Reddaiah K, Reddy TM, Mallikarjuna K, Narasimha G (2013) Anal Methods 5:5627

    Article  CAS  Google Scholar 

  76. Dongxue H, Tingting H, Changsheng S, Ari I, Li N (2010) Electroanalysis 22:2001

    Article  CAS  Google Scholar 

  77. Gareth PK, Niall M, Hugo N, Shishir K, Ehsan R, Michael H, Serge C, Georg SD (2012) Anal Methods 4:2048

    Article  CAS  Google Scholar 

  78. de Iorquirene OM, Wendel AA (2011) ACS Appl Mater Interfaces 3:4437

    Article  CAS  Google Scholar 

  79. Ai-Jun W, Jiu-Ju F, Yong-Fang L, Jun-Lan X, Wen-Ju D (2010) Microchim Acta 171:431

    Article  CAS  Google Scholar 

  80. Balwinder K, Thangarasu P, Biswarup S, Rajendra S (2013) Colloids Surf B 111:97

    Article  CAS  Google Scholar 

  81. Aparna TK, Sivasubramanian R, Mushtaq AD (2018) J Alloys Compd 741:1130

    Article  CAS  Google Scholar 

  82. Venu Gopal T, Madhusudana Reddy T, Venkataprasad G, Shaikshavalli P, Gopal P (2018) Colloids Surf A 545:117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, G. Venkataprasad greatly acknowledges the University Grants Commission (UGC) for providing financial support through basic scientific research (UGC-BSR-SRF, Beneficiary code-BININ00355271) fellowship for meritorious students. The authors also acknowledge the HR-TEM Facilities, funded by TPF Nanomission, GoI project at Centre for Nano and Soft Matter Sciences, Bengaluru, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Madhusudana Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataprasad, G., Reddy, T.M., Narayana, A.L. et al. Synthesis and characterization of a bi-functionalized lithium cobalt iron oxide/graphene nano-architectured composite material for electrochemical sensing of dopamine and as cathode in lithium-ion battery. Monatsh Chem 152, 785–802 (2021). https://doi.org/10.1007/s00706-021-02801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02801-y

Keywords

Navigation